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1.0 SUMMARY 

Engineering preliminary design methods for approximating and predicting the effects of 

viscous or equivalent viscous-type damping treatments on the free and forced vibration of 

lightly damped aircraft-type structures are developed. Similar developments are presented 

for dynamic hysteresis-viscoelwtic-type damping treatments. It is shown by both engineering 

analysis and numerical illustrations that the intermodal coupling of the undamped modes 

arising from the introduction of damping may be neglected in applying these preliminary 

design methods, except when dissimilar modes of these lightly damped, complex aircraft-type 

structures have identical or nearly identical natural frequencies. In such cases it is shown 

that a relatively simple, additional interaction calculation between pairs of modes exhibiting 

this “modal resonance” phenomenon suffices in the prediction of interacting modal damping 

fractions. The accuracy of the methods is shown to be very good to excellent, depending on 

the normal naturd frequency separation of the system modes, thereby permitting a relatively 

simple preliminary design approach. This approach is shown to be a natural precursor 

to elaborate finite element, digital computer design computations in evaluating the type, 

quantity and location of damping treatments. It is expected that in many instances these 

simplified computations will supplant the more elaborate ones. 



2.0 NOMENCLATURE 

2.1 Notation 

A 

a 

cross-sectional area of rod, in2; an arbitrary constant 

coefficient in interaction quartic equation; membrane dimension, inch 

B coefficient in resolvent cubic equation; an arbitrary constant 

b coefficient in interaction quartic equation; membrane dimension, inch 

C coefficient in resolvent cubic equation; damping coefficient, lb-sec/in 

C coefficient in interaction quartic equation; damping coefficient , 
lb-sec/in 

plate flexural rigidity, b i n 2 ;  coefficient in resolvent cubic equation D 

d coefficient in interaction quartic equation; damping coefficient 

lb-sec/in 

Young’s modulus of elasticity, lb/in2 E 

F function symbol; force 

f force, lb 

G shear modulus of elasticity, lb/in2 

I area moment of inertia, in4; mass moment of inertia, Ib-sec2-in 

i ordinal number; a subscript 

J torsional section constant, in4 

j 

K stiffness, spring rate, lb/in 

k stiffness, spring rate, lb/in 

ordinal number; complex operator, f l  
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M mass, 1b-sec2/in 

m 

N 

n 

0 

P 

Q 

Q 

R 

r 

S 

T 

t 

U 

21 

W 

II: 

Y 

z 

a! 

P 

Y 

mass, lb-sec2/in; an ordinal number; a subscript 

an ordinal number; aspect ratio 

an ordinal number; a subscript 

naught, a subscript 

generalized coordinate 

a response quantity; a generalized force 

a generalized coordinate 

a response quantity; a parameter 

an ordinal number; a subscript; a ratio 

an ordinal number; a subscript 

membrane tension, lb/in 

time, sec 

a displacement, inch 

a displacement, inch 

a displacement, inch 

a Cartesian coordinate, inch 

a Cartesian coordinate, inch 

a Cartesian coordinate, inch 

an ordinal number; a subscript; a constant 

an ordinal number; a subscript; a constant 

a parameter 
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a dilatation 

s 

c fraction of critical damping 

a damping coefficient, lb-sec/in; perturbation symbol 

77 loss factor 

e torsional displacement, radian 

11, 

P 

char act erist ic number 

mass per unit length, lb-sec2/in2; mass per unit area, lb-sec2/in3 

v frequency ratio 

axial coordinate position 

mass density, lb-sec2/in4; frequency ratio 

damping per unit length, lb-sec/in2 

f2 forcing frequency, rad/sec 

W frequency, rad/sec 

2.2 Symbols 

dot, differentiation with respect to time 

bar, amplitude of - 

* asterisk, complex conjugate 

V2 del squared, the Laplacian operator 

-# arrow, vector quantity 

tilde, a modified quantity 

integral, the integral of ( ) 

the magnitude of, the determinant of 

J (  1 

I I  
4 



I 1  square matrix 

U row vector 

{ I  column vector 

d (  1 

a ( )  

div( 1 

grad ( 1 

differential of ( ) 

partial differential of ( ) 

the divergence of ( ) 

the gradient of ( ) 
- 
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3.0 INTRODUCTION 

Aircraft, spacecraft, and especially rotorcraft airframes are subject to steady forced 

vibrations due to a variety of rotating or oscillatory type mechanical and aerodynamic 

systems. These steady forced vibrations can become severe when resonant or neax resonant 

conditions occur in the airframe. For example, in the case of rotorcraft, excitation frequencies 

include the rotational frequencies of the main rotor and tail rotor (both different) and 

harmonic excitations at integer multiples of their blade number times the fundamental 

frequency. In the case of two-bladed rotors, for example, excitation frequencies at rates of 

once per revolution, twice per revolution, four times per revolution, etc. are commonplace. 

In the case of propeller/rotor-type systems, similar families of excitations exist, but the 

difficulties can be compounded if the propeller/rotor operates at one rate of revolution in 

hovering flight and another one in forward flight. 

Of crucial importance in the case of resonant or near resonant forced vibrations is the 

fraction of critical damping associated with the particular mode which is responding. At 

resonance there is a direct, inverse relationship between the magnitude of the response and 

the magnitude of the fraction of critical damping of the mode. If damping can be increased 

by an order of magnitude, then the response is reduced by an order of magnitude, etc. In 

the case of airframes, the inherent damping levels are small and of the order of a few percent 

of critical damping or less. Accordingly, augmenting the normally small levels of inherent 

damping can be very beneficial when a severe steady vibratory response is attributable to a 

resonant or near resonant condition. 

Since weight, cost, complexi@, etc. are among the primary concerns in airframes, then 

whenever a “fix,’ or corrective addition of damping is indicated, a simple but accurate 

preliminary design type of engineering method of analysis is to be desired. This method 

should be capable of both rapid and relatively simple, but nevertheless accurate engineering 

predictions of modal damping. This is especially important in guiding the structural 

6 



designer-dynamicist in determining the location, type, and quantity of energy dissipation- 

damping treatments when the airframe is sustaining severe forced vibrations. 

The objective of this report is to develop a simple, preliminary design-type of analysis 

and methodology which can accurately predict the modal damping associated with damping 

treatment. It is expected that very detailed, lengthy, and complex finite element type 

computations may also be performed, especially in the development of a new airframe 

structural design. However, the preliminary design method developed and presented in 

this report is intended to be a precursor to  such finite element type computations. The 

designer can quickly determine the efficacy of localized damping treatments to within 

acceptable engineering accuracy prior to undertaking a much more detailed and complex 

design computation. It is also expected that the accuracy of this preliminary design method 

will frequently obviate the need for any other computations. 



4.0 ANALYSIS 

4.1 The Single Degree of Fkeedom Oscillator With Damping 

The special case of a dynamic system whose vibrations can be adequately represented by 

a single degree of freedom is considered first. This will permit the definition and development 

of various damping concepts in a simple manner before dealing with the general case of a 

damped structural dynamic system with many degrees of freedom. 

Consider first the case of viscous damping where the damping force is proportional to 

velocity, but opposite in sense. The governing scalar differential equation of motion is 

m$+&+kz = f da t ,  where the complex exponential represents a simple harmonic excitation 

of amplitude 7 and frequency Q. The parameters rn, c, and k represent the system mass, 

damping and spring constants, respectively. 

In the transient case when f = 0, the general solution takes the form z(t> = ZeXt. A 

substitution of this leads to the characteristic polynomial X2 + (5) X + (s) = 0. Defining 

the natural frequency of the oscillation as w ,  w2 ZE (g) , and its fraction of critical damping 

by c 3 (A), the characteristic equation becomes A2 + 2CwX + w2 = 0. This equation 

yields the characteristic number X and its complex conjugate A* as follows: 

The transient solution then takes the form 

where A and B are constants to be determined from the initial state of the transient 

oscillation, where 

z(o) = zo and k(o) = uo. 

In the case of steady forced vibration the transient oscillation decays rapidly and after several 

cycles the steady state response is given by ~ ~ . ~ . ( t )  = Zs.s.ejRt. Substitution above results 
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- 
in the equation 

f 
(k - mIR2) +j (&) ’  5s.s. = 

Introducing the previous definitions f, IR, and c gives 

where 

Defining the static displacement Zs.s.static E (j/k), the steady state forced response is given 

by 

Now consider the case of dynamic hysteresis, where the damping force is proportional to 

displacement, but opposite in sense to the velocity. Employing the imaginary operator j as 

a “phase shifter” or “differentiator,” the governing equation can be written as follows: 

mx + k(1 + j q ) ,  = J;ejnt, 

where q, the “loss factor” will be seen later to be a measure of energy dissipation by dynamic 

hysteresis. In the transient case when f = 0, the general solution can be written as z = 5eXt, 

so that the characteristic equation takes the form 

x2 +u2(1 + jv)  = 0. 

Accordingly 

x = fju(1 + jq ) l /?  

Employing DeMoivre’s theorem, 



where 

2 114 (sin! f j c o s -  2 . 
2 7 A = - - w ( l + q  ) 

In the typical engineering case of 7 < 1 and, generally? q << 1, 

x --w (; * j/qq . 

Thus the loss factor divided by two may be interpreted as equivalent viscous damping with 

cE@v&nt = 7/2. As an alternative to the foregoing transient vibration analysis employing 

the operator j ,  the governing equation with dynamic hysteresis may also be written as 

Taking the solution once again in the form z(t) = ZeXt, the characteristic equation follows 

as 

x2 + wqx + w2 = 0. 

It is seen at once that ['Uivalent = q/Z- 

In the case of steady-state forced vibration with dynamic hysteresis employing either the 

formulation 

mx + k ( l +  j7)x = fdat7 

or 

leads to a steady-state solution with comparable results. First with the operator j :  

where 
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The equivalent viscous damping then follows as 

<Equivalent 

so that strictly speaking, only at resonance ( f l /w)  = 1 is (Equivalent = q/2  (however this is 

the case of greatest practical interest); in the case of the other formulation 

The equivalent viscous damping then follows as <Equivalent E q/2. 

That q is a measure of energy dissipated per cycle can be seen as follows: the dynamic 

hysteresis damping force is given by 

Computing the work done against fdmpkg per cycle of simple harmonic response at 

amplitude xo and frequency a, 

By contrast when the damping force is modeled as viscous with fdampbg = - W u i d e n t k ,  

the energy dissipated per cycle follows in a, similar manner as 

w/cycle = TCQX,. 2 

Equating the two expressions for work per cycle 

Dividing through by m 
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Then 

[Equivalent = - 

This is seen to be the same as the result obtained Pbove when forced vibration with the 

operator j is taken as the basis of defining the relationship between the loss factor 7 and 

[Equivalent. It is to be noted that it is primarily at or near resonance that [Equivalent takes on 

special significance. Accordingly, from an engineering perspective the relationship is taken 

as a universal one that 

rl 
[Equivalent = 2. 

Various other forms of energy dissipation are also of interest during forced vibration. 

Once again special interest centers on the response at or near resonance. Also, the cases 

of relatively small amounts of damping are assumed, so that despite the nonlinear aspects 

and character of the dissipative force, the steady state response exists, is dynamically stable 

and for practical purposes is simple harmonic in time. Employing the concept once again 

of energy dissipated per cycle as a basis €or deducing and defining the equivalent viscous 

damping coefficient, the following summary can be made for the most frequently encountered 

cases of damping: 

(1) Dynamic Hysteresis 

qquivdent = (kq/f2) 7 [Equivalent = [#] ; 
(2) Coulomb Friction 

(;) (*) 
CEquivdent = 0 7 [Equivalent = [ k ( g )  ] ; 

(3) Velocity Squared Damping ~ D ~ ~ Q  = -a& 

Qquivdent = (E) {Equivalent = [(E) (5> ( ~ ) ]  ; 

12 



(4) Velocity Cubed Damping (fdamping = -a$ 3 ) 

4.2 Free Vibration of Systems With Viscous or Equivalent Viscous Damping 

The governing matrix differential equation of free motion of systems with viscous or 

equivalent viscous damping is 

where { x ( t ) }  is the vector displacement, Em], [k]? and [c] are, respectively, the system mass, 

stiffness, and damping matrices. The [m] and [k] matrices are symmetric and positive 

definite; the [c] matrix is symmetric and either positive definite or positive semi-definite. 

Consider a solution in the form 

{ x ( t ) }  = {3}j&t, 

where { Z } i  and X i  are, respectively, the ith complex modal vector and the associated complex 

ith characteristic number, where i = 1,2, .  . . ? N ,  and 

There are also N complex conjugate vectors {Z}: and their associated characteristic numbers 

which satisfy the differential equation. The assumed form of solution leads to a system 

of algebraic equations which follows in matrix form as 

[x:[m] + &[c] + [k]] {Z}i = {0}, i = 1,2, .  . . , N .  

13 



Pre-multiplying by the transposed complex conjugate modal vector HZ yields N scalar 

equations 

This is re-written as 

A; + 2ciwixi + wi 2 = 0, 

where 

These N scalar characteristic equations yield the N characteristic numbers and their N 

complex conjugates which are as follows: 

Orthogonality relationships which are useful in analyzing forced vibrations are now 

developed. Writing the rth and sth matrix algebraic relations: 

Converting both of these to scalar relationships by pre-multiplying by Hs and H,, 
respectively, yields: 

Substracting the sth equation from the rth and noting the symmetry of [m], [c], and [k] 

yields 

14 



Factoring out (AT - A,) when T # s, the orthogonality relationship follows as 

It is to be noted in passing that if As = A:, then the previously derived result for CT. 
follows from this orthogonality relationship. 

An alternative orthogonality relationship can be deduced by adding the rth and sth scalar 

equations above. Noting the symmetry of the [m], [c], and [k] matrices once again, there 

results the scalar equation 

Noting from above that 

and substituting yields 

[(A'" + A:) - (AT. + A","] (lEIT.[m]{z},) + 2 (HT. [k ] {Z} , )  = 0. 

Simplification results in the alternate orthogonality relationship 

It is to be noted in passing that if A, = A:, then the previously derived result for w? follows 

from this form of the orthogonality relation. 

In summary when T # s, 

and 
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When the sth mode corresponds to the complex conjugate of the rth mode, then 

and 

It is to be noted that, except in the case of differing modes with closely matched natural 

frequencies, the undampgd modes may be employed in calculating wr and, in turn, &. This 

is discussed at length below and in Reference 1. 

4.3 Free Vibration With Two Different Modes Having the Same 
Natural Frequency 

To illustrate consider the case when modes “‘T” and “s” have the same natural frequency, 

althoGgh the modal patterns differ. A simple example of this is provided by a rectangular 

membrane of length a and width b with interchanged nodal lines such as the modes Gmn(z, y) 

and Grim ( z , y ) , where 

and 

where T is the membrane tension force per unit length and p is the membrane mass per 

unit area. Equating the foregoing frequency expressions, a frequency match occurs whenever 

a = b, which corresponds to a square membrane. A more general case occurs when wmn = wrs 

and the membrane aspect ratio N = (a/b) satisfies the constraint N = 

m, n, T,  and s are integers. For example when m = 1, n = 2, T = 3, and s = 4 a frequency 

16 

1 m2-T2 , and 



match occurs for the aspect ratio N = (a/b) = .8165. Other detailed examples will be 

provided later in the section presenting numerical results. 

Now consider an N degree of freedom system in free damped vibration as above where the 

rth modal vector {Z}, differs from the sth modal vector {%}87 but the rth natural frequency 

wr equals the sth natural frequency us. Now expand the modal vectors into an undamped 

mode series. That is with undamped modal vector participation factors or series coefficients 

where 
N 

The system algebraic equations when { ~ ( t ) }  = {Z}eXt then take the form 

Noting that in the case of the undamped modes 

Also noting the orthogonality of the undamped modes given by 

the matrix algebraic equation simplifies to 

where [I]  is the identity or unit matrix and 
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Note also the interactive damping fractions cij where 

Also let Y = (&) and ri 3 (2) . Then 

The characteristic determinant can, of course, now be expanded to obtain the characteristic 

roots of the system. However suppose that r, = rp, the case of different undamped modes 

with the same natural frequency. In this case of the degenerate modes “a” and “P,,, the 

damped modal vectors are linear combinations of ‘(a” and (‘P,,. That is 

or 

Since only ‘‘a’’ and “/?” interact in this special case, then the two algebraic equations for 

the modes “a” and “P,, decouple from the rest of the system due to this degeneracy. This 

results in a relatively simple and informative quartic characteristic equation for these modes. 

That is 

2 1 0  2 1 0  [. [ o  1 ] + . [ $ :  4 ] + 4  
and 

When 
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This quartic is now seen to be factorable into the product of the,quadratic factors 

(v2 + 6) [.” + ( d m  + dpp)” + r:] = 0. 

The implication of this is that when matching natural frequencies of different modes occur, 

one of these modes is undamped, while the other has the damping of both. More about this 

will be presented in the section on numerical results where it will be seen that many cases of 

engineering interest satisfy the foregoing conditions, or are numerically comparable to this 

when either I $ 1  is exactly zero or negligibly small compared to 27-z above. 

4.4 Employing the Undamped Modes to Determine the Damped Modes 

It has been shown above that the exact undamped natural frequencies and modal damping 

fractions for the various modes of the dynamic system are given by 

Clearly the efficacy of an engineering approximation depends on accurately approximating 

the ith damped modal vector Hi and its complex conjugate Hi. The undamped modal 

vector Bu provides the necessary approximation, provided that the system is lightly 

damped and that two dissimilar modes do not have the same or nearly the same natural 

frequencies, the “modal resonance” case. Express the ith damped modal vector as the 

ith undamped modal vector and a perturbation effect due to damping, {S},$ and {SZ}i, 

respectively, where 

In approximating the ith mode fraction of critical damping for use, for example, in forced 

vibration calculations, it is clear that if {SZ}i is the same order of magnitude as {Z}ui and 
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& is very small compared to unity, then { S } i  and (3): will approach {Z}ui and cii N- Ci. 

Rayleigh’s theorem for damped linear systems states that the ith eigenvalue A i  is stationasy 

with respect to perturbations in the ith eigenvector: that is, 

d&/d{Z}i = 0. 

Employing the perturbation form for {Z}i yields 

For very small values of {[ii} and absence of a “modal resonance” which can result in a very 

large {SZ}i, the ith eigenvalue is seen to &o be stationary with respect to the ith undamped 

modal vector {Z}%, so that 

d&/d{z}i  = 0. 

In this case 

The perturbation vector {&i?}i is now examined by expanding the modal vector {S} into 

an undamped modal vector series, 

where the p i ( t )  are generalized coordinates or undamped modal participation factors. In 

view of the orthogonality of the undamped modes with respect to [m] and [ I C ] ,  

where Sij is the Kronecker delta with magnitude zero or unity as i # j or i = j, respectively. 

Also, Cij is given by 



Clearly the perturbation in pi  (and in turn the ith damped modal vector) is of the order of 

cii, unless a “modal resonance” occurs. 

4.5 Forced Vibration of Systems With Viscous Eamping 

The system is assumed to be in steady forced vibration under a periodic excitation. This 

periodic excitation has a typical simple harmonic component { ~ ( t ) }  = {?}eiQt, where {f} is 
the vector amplitude and 0 is the excitation frequency; the complex exponential represents 

the simple harmonic variation in time. As in the case of free vibration { ~ ( t ) }  is the system 

displacement vector, [k] and [m] are symmetric, positive definite matrices representing system 

stiffness and system mass, respectively. [c] is a symmetric matrix which is either positive 

definite or semi-definite; it represents either actual viscous damping or an equivalent viscous 

damping representation for other forms of energy dissipation. Accordingly the governing 

matrix differential equation is 

The system is now represented in a canonical matrix form by augmenting the system 

displacement vector with the system velocity vector. The augmenting identity equation 

[m] { k }  - [m]{k} = (0) yields the following partitioned matrix format for the system forced 

vibration: 

A still more condensed form results by employing {z( t )}  { 
then becomes 

} ; the governing equation 

[ A ] { i }  + [B]{z} = {F}ejQtt, 

21 
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where 

In the case of homogeneous free vibration there are 2N damped modes and their associated 

damped Characteristic values {8}T and Xr7 respectively (Le., there are N complex modes and 

their associated complex characteristic numbers and their N complex conjugates). These 

satisfy the damped modal orthogonality relationships 

Hr[A]{Z} ,  = Wr[B]{Z}, = 0, T # s. 

A modal expansion solution is now developed for the steady state forced vibration of the 

systein. In the steady state {z( t )}  is represented as 

where the qr(t) are generalized coordinates or “damped modal participation factors.” 

Substituting above and employing the orthogonality relationships, 2N uncoupled, scalar 

response equations result. These are 

where 

In the steady-state the modal participation factors qr(t )  have the solution qr(t) = ijT$m- 

Substitution above yields the complex amplitude ijT given by the equation 



The complex closed form solution for steady-state forced vibration then follows as 

2N 

r=l 

Substituting from above and employing the previously dehed modal scalar quantities, 

the steady-state response of the damped system is 

where 

Also 

and 

where the asterisk (*) denotes the complex conjugate modal vector. 

The amplitude of the rth generalized coordinate is 

This can be rewritten as 

where the rth mode static displacement is defined as 

In the case of free damped vibration, the rth mode has the Rayleigh-type quotient for the 

rth characteristic exponent 

23 



Accordingly the ratio 2%- follows as ( qrstatic 

(A) = k-j(E)]-l. 
qrstatic 

Similarly for the (T + 1) mode 

Since the damped modes will occur in complex conjugate pairs for all cases of practical 

engineering interest, let the (r + 1) damped mode be the complex conjugate of the rth 

damped mode and denote this by an asterisk superscript.t Then 

Consic!er the portion of the steady-state response due to the rth damped mode and its 

conjugate: 

or 

Continuing to simplify 

t Subsidence or critically damped modes will not occur in the aerospace type structures of interest. 
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Then the complete closed-form solution for the steady-state response of the system to a 

simple harmonic excitation follows as 

where 

The foregoing steady-state form of the solution is now rewritten as follows: 

where 

It is to be especially noted that each damped mode (and its conjugate) respond with dynamic 

magnification and phase shift characteristics similar to single degree of freedom damped 

oscillators. The magnification depends on the ratio of the forcing frequency to the natural 

frequency (Q/wr)  and the modal fraction of critical damping [ r .  It is seen that a resonant or 

25 
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near resonant modal response magnitude is crucially dependent on e,. the fraction of criticd 

damping. 

4.5.1 Approximating the Response of Lightly Damped Systems 

Consider the numerators of the response solution. Defining this as A,.: 

Neglecting the imaginary parts of {ii?},. and (3): for small damping yields {Z } r  "= (33): 

{')rUndamped * Then 

Noting that 

and that 

(">"=.(.+j&q"= W,. (-1+2jc,.&q +2f$ 

and 
2 (") W r  = (-1 - 2 j c , . 4 q  + 2c; 
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where 

For practical purposes, if cT << 1, the complex parameter yr in the rth damped mode response 

is unity. Accordingly the lightly damped system response can be computed, mode-by-mode, 

with a quasi-single degree of freedom response function h!,,-. That is 

N 
{z( t ) }  E2 ("t-M&(z), , 

7=1 

where 

Hw.{j} is the scalar energy or work function of the load distribution {r} acting in the rth 

(undamped) mode and M, [k]{Z}ru. is the rth generalized or modal stiffness scalar. The 

ratio of these two scalars is analogous to the static deflection of a single degree of freedom 

is a measure of the rth mode response when the load 
system. That is, ( &I$,-) 
{f} is a static or very slowly varying one so that 

or in effect (E) <<< 1. 

4.6 Free Vibration of Linear Systems With Dynamic Hysteresis-Viscoelastic 
Damping 

The governing system differential equation in matrix form is 



where {x} is global displacement vector for the N-degree of freedom system. [m] and [k] 

are symmetric, positive-definite matrices. [SIC] is a symmetric matrix which is positive-semi- 

definite. The complex operator j, where j 2  = -1, represents and effectuates the dynamic 

hysteresis damping force character where these forces have the sense of being opposite 

to the system velocity components, but are at the same time proportional to the system 

displacement components. 

The general solution for free vibration displacements is taken in the form {s(t)}  = {%}eXt, 

where {Z} is a complex modal vector to be determined, and X is a complex scalar 

characteristic value associated with the modal vector. This reduces the matrix differential 

equation to the following matrix algebraic equation for the ith mode: 

[Xq[m] + [ IC]  + j[SIC]] {Z}i = (0). 

Pre-multiplying this equation by the transposed complex conjugate ith modal vector H;, a 

scalar equation for X i  follows below. 

Defining the real scalar quantities 

the scalar equation for Xi is rewritten as follows: 

Solving for Xi, 

and 



Employing Euler 's theorem 

and 

Accordingly 

Its complex conjugate X;T is 

The ith mode decay factor is the real part of the ith characteristic value given by 

= -5. wi,  it follows By analogy with viscous damping where the decay factor is X i  Real WiiCOUS 
viscous 

that 

where qi is the modal analogy of the material loss factor q for a simple structural element 

with complex moduli 
- E E(l + j q )  or G G(1+ jq). 

Generally q is much less than unity, so that for q << 1 

N 

ci vicous = %/2. 
Equivalent 

In the extreme cases of synthetic rubber materials (specially compounded and impregnated 

with carbon-black particles to enhance damping), the loss factor can approach unity in 

magnitude. Then for qi = 1 
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It is seen that in this extreme case, the linearized loss factor prediction of the equivalent 

viscous damping fraction of critical damping of 0.5000 overestimates the exact value by 

about nine percent (9%). A graph of the modal equivalent viscous damping fraction over 

the range of modal loss factors from zero to unity is shown in Figure 1. It is seen that 

negligible error occurs over the practical range of interest from qi = 0 to qi = 0.5; where at 

.243 and the error of the linearized approximation is only about three = 0.5, ciQ*dmt 
vicous 

percent (3%). 

Returning to the definition of Vi, 

and expanding the ith complex modal vector into the representation 

where the real, undamped modal vector {Z}iunbped is perturbed by the complex vector 

{SZ}i as qi increases from zero. Substituting above, the equation for Vi  becomes 

Except in the case of a modal resonance, the perturbation vector {Si t } j  is small, generally 

very small and of the order of magnitude of qi itself or less as in the case of lightly damped 

viscous systems (discussed above). Accordingly the approximation for qi employing the 

undamped modes is seen to be a valid 

qi 2 

engineering approximation for qi. That is 
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4.7 Pervasive Dynamic Hysteresis-Viscoelastic Damping 

In the special case when the matrix [SIC] is given by [Sk] E q[k] an exact decoupling 

of the damped modes is possible employing the undamped modes. In this case the matrix 

differential equation for free vibration is 

Taking the ith damped mode solution in the form {z( t ) )  = {3)iUndamped .Xit, it follows that 

Employing the undamped mode orthogonality condition 

then A: + w:(1+ j q )  = 0, where w: is given exactly by Rayleigh's quotient 

It follows as in the general case that 

for rl << 1. In this special case where the loss factor q is more a universal structural property 

of the system, rather than a modal one, the equivalent viscous damping ratio of every mode 

is the same, namely 
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4.8 Forced Vibration of Systems With Dynamic Hysteresis 

Consider a simple harmonic system excitation at frequency R (radians/second) repre- 

sented by the complex exponential vector { f ( t ) }  = {f}eiot. The system matrix differential 

equation is 

[m]{5} + [ k ] { z }  + j [ S k ] { z }  = {f}eint. 

The steady-state forced vibratory response can then be represented as { z ( t ) } ~ . ~ .  = 

{Z}s.s.ejot. Substitution above yields the matrix algebraic equation 

Now consider the damped modal expansion 

N 

and rewrite the foregoing equations 

Continuing, this equation is equivalent to 

Since 

then it follows that 

r=l 

Pre-multiplying by the transposed complex modal vector Bs and employing the dynamic 

hysteresis-viscoelastic orthogonality condition 



and 

The rth and sth damped modes can be interrelated as follows: 

~s [[k] + j [ ~ k ]  + ~ ; [ m ] ]  (21, = 0 

and 

H T  [[k] + j[SIC] + x,2[m]] (5)s = 0. 

Since [ I C ] ,  [SIC], and [m] are symmetric matrices, subtraction of the second equation from the 

first yields 

Accordingly, since AT # As, the orthogonality condition follows as 

HT[m]{z}s = 0, T # s. 

Defining 

and noting from above that 

~f = -w:(1+ jqT), 

and the magnitude of this response ratio, ‘%he damped rnagdication factor with modal I 

hysteresis” follows as the magnitude 
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4.9 Derivative Operator Formulation For Systems With Dynamic 
Hysteresis 

Consider the free vibration of a structural dynamic system with dynamic hysteresis type 

energy dissipation. We seek the equivalent viscous damping fraction of critical damping for 

the ith damped mode of vibration. The governing matrix differential equation for the free 

vibration is taken as follows: 

The incremental viscoelastic type forces have the phase of viscous damping forces, but do 

not increase in magnitude with increase of natural frequency of vibration (hence the factor 

(4 -l) - 
The general solution to the governing equation for the ith mode of free vibration is taken 

in the form 

Then 

Defining 

Then 

where 

Substituting for w;, 



Defining the ith the modal loss factor as 

then 

1 - 
ciE4uiyal-t - 5%. 

It is to be noted that for practical purposes of modal loss factors (and internal loss factors 

also) of the order of 0.50 or less, there is negligible difference in this result and the one 

employing a complex stiffness approach for modeling the viscoelastic-dynamic hysteresis 

effects in the damping of structural vibrations. 

4.10 The Global Equations With Proportional Damping 

Consider the case of so-called proportional damping, when the damping matrix [C] is 

expressible as a linear combination of the system global mass and stiffness matrices. That is 

[C] f a[m] + P[k] .  

Accordingly the governing matrix differential equation for free vibration of the structural 

dynamic system takes the form 

In the undamped case the ith characteristic vector {Z},i and the associated undamped 

natural frequency w,i satisfy the matrix algebraic equation 

and the orthogonality relations 



In the damped case, consider a solution for the ith damped characteristic solution in the 

form 

If this is valid, then 

Pre-multiplying by the transposed ith undamped characteristic vector ~ u i  results in this 

matrix algebraic equation being reduced to the scalar algebraic equation 

It can also be inferred that (2); E {iE}ui, since other potential terms in {S}i  involving the 

modes {Z}j  # {%}i will vanish due to the orthogonality of the {Z}ui with respect to [m] and 

[k]. Accordingly the foregoing scalar equation is an exact relationship for determining the 

ith damped mode characteristic value when proportional type damping is present. It follows 

then that in this case 

where 

For example when proportional viscoelastic or proportional dynamic hysteretic type damping 

is assumed where 
P O  p=- ,  
wi 

then 
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5.0 APPROXIMATING THE DAMPING FRACTION 
FOR CONTINUOUS LINEAR SYSTEMS 

5.1 The Damped Rod in Axial Vibration 

Figure 2 illustrates a uniform rod which is built-in at one end and fiee at the other. It is 

embedded in viscoelastic material capable of dissipating energy during vibration. Neglecting 

the stiffness of the damping material compared to that of the rod itself, a onedimensional 

wave type equation follows which describes the damped, free axial vibrations of the rod 

with the boundary conditions 
dU 40, t )  = 7& (.e, t )  = 0. 

Noting that the natural frequencies of the undamped free vibrations are given by 
- 

and that 

the governing partial differential equation is separated with the solution 

u(z, t )  = %(%)eAt. 

This leads to the characteristic equation 

from which 

where 



and where 

c ~ a f !  and r n ~ p t .  

Collecting the various definitions and substituting above yields 

1 ] [A], n=1,2, ... . 
cn= [( 2n-I)n ,lAZji 

Figure 3 illustrates the case of the rod once again, but with a damper of rate c placed at 

the previously free end. The governing equation is now the wave equation 

with the boundary conditions 

u(0,t) = 0 

REu'(f!,t) = -c/i(f!,t) 

In view of the foregoing boundary conditions and the solution in the form 

At u(sc,t) = a(z)e , 

there results the characteristic equation 

Since the damping fraction as a function of the system parameters is desired, the character- 

istic exponent is transformed as follows to reveal the real part explicitly. Let 

Defining 

employing the trigonometric-hyperbolic function identities 

sinh jz E j sin z 
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cosh j z  E cos z, 

the transcendental, complex characteristic equation simplifies to two separate equations, 

each of which must vanish. These are 

COS AI = 0, 

Employing the foregoing definitions 

and since the admissible values of AI are 

A I =  (F)r, n=1,2 ,..., 

the natural frequency of the damped oscillation is 

This is seen to be identical to the results for the undamped case. Continuing, 

and the transcendental equation for the decay factor and damping fractions for the various 

modes follows as 
7 

Inverting the hyperbolic tangent function 
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Since lightly damped systems are the ones of primary interest, an engineering approximation 

follows at once by employing the power series expansion of the hyperbolic tangent function 

for s m h  argument z: 

23 25 2 tanh z=z+-+-+ ...( z < I ) ;  
3 5  

and 

It is noteworthy that a damper of rate c at the otherwise free end of the rod yields twice 

the damping fraction of the pervasive, uniformly distributed damping c = 0.l previously 

determined. 

The engineering solution for the damping fraction for the case being considered is now 

shown to be identical to that obtainable by neglecting the intermodal coupling due to 

damping, which is seen to be valid for lightly damped systems. The nth undamped mode of 

free axial vibration of the rod is 

The governing, uncoupled differential equation is by analogy with a single degree of freedom 

system 

and 

. . / j  . . . -. ..i 



where 

e 
''Effective = Jd  a(z)az(z)dz = (d) sin2 (y) T = C. 

Accordingly 

and 

This, of course, is identical to the formal solution of the result above employing an exact 

closed form solution for a lightly damped system. 

To illustrate this point further by a direct numerical comparison, consider the rod with 

a free-end damper designed to yield a fundamental mode damping fraction ClNominal = 0.10. 

This is a relatively large fraction of critical damping for an engineering structure. Employing 

the exact, closed form transcendental equation solution, 

[iELExact = 0.1014. 

This implies that the exact solution is 1.4 percent greater than that calculated from the 

engineering approximation. This small error decreases to zero as the nominal fraction of 

critical damping desired is decreased. For example for a nominal damping fraction 

the approximation error is approximately 0.3 percent. 

5.2 Damped Structural Members Other Than Rods 

Since the governing equations for simple, St. Venant type torsion are also one dimensional 

wave type equations, it follows that by analogy the damping fraction results are identical 
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to those of stretching, axial type rod vibrations. For engineering cases which are lightly 

damped and the damping treatment ranges from x = x1 to x = 22, the damping fraction 

follows in general as 

Similar formulas for biharmonic or flexural systems such as beams, plates, and shells can 

be written by inspection. They are expected to be even more accurate than those for wave 

equation type systems. This follows from the greater separation of natural frequencies and, in 

turn, still weaker intermodal coupling due to damping. For example, a comparison of natural 

frequency spacing for a simply supported, uniform beam shows a mode number squared 

separation. That is, the second mode natural frequency is four times the fundamental, the 

third mode is nine times the fundamental, etc. The same structural element in stretching 

or twisting tends to have an integer spacing such as 1, 3, 5, . . . for the rod fixed at one end 

and free at the other. As an example of the engineering approximation for a damped beam 

in bending, consider the simply supported uniform beam with a damper of rate c at x = t. 
For such a beam the frequencies and mode shapes are given by 

and, as is always the case, 

where 
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au av aw 
ax ay az 

A = - + - + -  

- 2  Introducing the displacement vector q' and the unit vectors i, 3, and ic', 

a' = 45, y, z)f + v(x, y, z)j' + w(x, y, Z ) L ,  

and noting that 

A E divq' 

and 

Eu E x G E  
(1 + u)(l  - 2v) 2(1+ v) 

the foregoing scalar Navier equations are combined into the single vector equation - 
(A + G)gradA + GV2G = + Q$. 

In free, undamped oscillations when (T 0, q' = ;ej'"nt, and 

__)- 

(A + G)gradAn + GV2& = -pw:gn. 

Now taking the damped oscillation solution in the form 

there results the characteristic equation 

It follows then that the damping fraction for the nth mode of oscillation is given by 

In the cases of spot damping or concentrated and localized damping, it is intuitively obvious 

that the effective nth mode damping fraction will exceed the result above, provided that 
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the total distributed pervasive damping equals the concentrated damping in magnitude, and 

that an anti-nodal region is employed for the damping treatment. Needless to say, dual 

modal degeneracy is excluded in this observation, where it has been seen that one of the two 

degenerate modes can be undamped in such cases. 
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6.3 Examples of Damped Beam Vibration 

The governing differential equation for a viscously damped beam in transverse bending 

vibrations is 

The beam is assumed to be uniform in its flexural rigidity EI and mass per unit length 

p. The damping constant per unit length CT will take several forms in the examples which 

follow, ranging from a constant to a single or multiple discrete dampers. In every case 

an energy relationship which is now deduced provides the exact solution for the damping 

fraction when the exact damped eigenvectors are known. It is also the basis for an acceptably 

accurate engineering approximation when the damped eigenvectors are approximated by the 

undamped ones. 

Taking the exact solution in the form 

the partial differential equation is reduced to an ordinary differential equation which follows 

below as 

Since these eigenvectors Gn are, in general, complex vectors, multiply the foregoing equation 

by the complex conjugate eigenvector and take the definite integrals over the beam span 

from x = 0 to x = L. This results in the equation 

Integrating by parts and invocating the beam's boundary conditions yields the algebraic 

equation 
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Defining 

then 

In the case of pervasive damping when CT is a constant, 

More generally, when CT is not constant over the span and the modes have the usual numerical 

spacing, Gn is approximated by Gnu, the undamped modal vector. Accordingly, 

and 

For example, consider the case of the simply supported beam with pervasive damping. In 

this case the exact solution follows as 

so that 

Consider the case now of three discrete dampers of rate (C/3) located at x = 4'4, L/2 ,  and 

3L/4. Approximating GI by the undamped mode 

and 





This approximation for the damping fraction is 

0.50 
0.75 
1.00 

The fundamental mode of the cantilever is now approximaied by a polynomial approximation 

which satisfies the undamped cantilever beam boundary conditions. This is 

0.1284 
0.4462 
1.0000 

Computing the various terms in the approximation and comparing the results to the beam 

tip mounted damper yields the tabular comparison below. 

6.4 Bending Vibration of a Discretely Modelled Damped Beam 

Consider a cantilever beam of length L and constant flexural rigidity E I .  Concentrated 

masses ml, m2, and m3 are attached at 2 = &/3, x = 2 / 3 ,  and x = A! as illustrated in 

Figure 9. A damper of rate C is placed at x = L .  Taking ml = m2 = m3 = m and neglecting 

the distributed mass of the beam compared to the effects of the concentrated masses, the 

three coupled equations of motion in matrix format are 

[o 1 0 0  1 O]{~~}+(~)[O 0 0 0  0 o ] {~ : )  

0 0 1  w3 0 0 1  673 

-46 12 

12 -16 7 

+ (-) 8 1 E I  [ ::6 44 -161 { ii} = { !}. 
13m@ 
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A detailed numerical comparison is now carried out between the fundamental mode 

damping fraction approximation and an exact solution employing a digital computer code 

for the damped eigenvectors and associated complex eigenvalues. These digital computer 

results are presented in Appendix C. 

The data employed is as follows: 

ml = m2 = rn3 = rn = 1.0, 

(S) = 1.0, 

and 

1 166.154 -95.538 24.923 [ 24.923 -33.231 14.538 
[kffedive] E -95.538 91.385 -33.231 ; 

the damper constant C is varied to determine the influence of the magnitude of C on the 

accuracy of the approximation with 

C =  0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 1.00, 1.50, 2.00. 

The engineering approximation employs a Dunkerley type approximation followed by a 

matrix interaction to approximate the fundamental mode natural frequency and undamped 

modal pattern employing a pocket type calculator. This approximation yields the following 

data: 

wi &’ 0.8775 (radians/second), { ~} E { 0.5318}, 0.1565 

fiJ3 1.000 

and the formula 

This permits a direct tabular comparison which follows below and which illustrates the 

excellent accuracy afforded by the method of approximation. 
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C 
0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
1.00 
1.50 
2.00 

'Percent error is defined as "E" = [(e) - 11 loo- 

53. " Approx" C1 uk.n % Error* 
0 0 0 

0.0436 0.043608 0.018 
0.0872 0.087227 0.031 
0.1308 0.130851 0.0390 
0.1744 0.174499 0.0568 
0.2180 0.2181739 0.0798 
0.4360 0.437 176 0.2697 
0.6540 0.657797 0.5806 
0.8720 0.8807479 1.003 

It is seen that for practical engineering levels of damping, the percent error is a small 

fraction of one percent. Even at levels approaching critical damping the error is still only of 

the order of one percent. 

6.5 Coupled Bending and Torsion Vibrations of a Discretely Modelled 

Damped Beam 

Now consider the system illustrated in Figure 10. This six degree of freedom system 

extends the previous illustration by introducing coupled bending and torsional oscillations. 

The rationale is that torsional modes are, generally speaking, not as widely separated 

numerically as bending modes, so that the method of approximation might yield larger 

errors as the damper constant is increased. Once again 

mi = mq = m3 = m = 1, 

but mass moment of inertia effects are introduced with 

I1 = I2 = I3 = 1. 

The offset of m3 is taken to be d3 = 1. Also 



and 

C 
0.10 
0.20 
0.30 
0.50 

To test the hypothesis that the engineering approximation will still yield results of 

c3 "Approxn c3 i~&y % Error 
0.0225 0.0233 3.56% 
0.0449 0.0469 4.45% 
0.0675 0.0709 5.03% 
0.1124 0.1213 7.92% 

acceptable engineering accuracy, the third of the six modes of damped coupled bending 

and torsion is examined. The natural frequency and associated undamped modal vector are 

computed and are as follows: 

w3 "= 1.34l(radians/second) 

N , -  - 

3 

0.1683 
0.7863 
0.5504 
0.1592 
1.0000 

, -.7540 

The approximation for 53 is found to be c3.,,,,,,:, 

results are presented in Appendix D and yield the following tabular comparison: 

.2249@. The exact digital computer 

Here the percentage errors are significantly larger than for bending vibrations only, but 

are still of acceptable engineering accuracy for preliminary design purposes when the type, 

location, and quality of damping are of principal interest in the system design. 

6.6 Vibration of a Plate With Spot Damping and Different Modes 
With Matching or Nearly Matching Natural fiequencies 

Figure 11 shows a simply supported uniform rectangular plate with a concentrated 

damper force at the interior point (Z,jj>- The governing differential equation of free motion 
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is 

DV4W(Z, y, t )  + pW(x, y, t )  + diU(Z’,y, t )  = 0. 

The undamped modal patterns are readily seen to be 

The associated natural frequencies are 

where N E (;) . Now consider the case where differing modal patterns iZrs have the same 

natural frequency. The plate aspect ratio N is then related to the modal integers my n, T ,  

and s by 

It is shown analytically in References 2 and 3 that this ‘‘sp~t’~ damping treatment fails 

due to the degeneracy of modes mn and T S  when their frequencies match. In effect a nodal 

point of the damped mode occurs at the damper location (Z,g. 

A numerical approach also provides a demonstration of this anomaly. A modal expansion 

of undamped plate modes is employed followed by a numerical solution of the characteristic 

determinant and polynomial by computing the damped characteristic values as the plate 

aspect ratio is systematically varied to produce two modes whose natural frequencies are 

close to one another and ultimately match. The first nine modes are coupled by the damper 

as the aspect ratio is varied for several nominal damping levels ranging from 5 percent to 50 

percent of critical in the fundamental plate mode. The frequency match occurs in the fourth 

and fifth modes. The table which follows below is for a plate of constant area of one square 

meter as the aspect ratio is varied. The damper is placed at (:/a) = ( y / b )  = (l/x). It is seen 

that the loss of damping is almost complete over a significant range of frequencies above and 

below the match at aspect ratio N Z .7744 and frequency ratio p 1.1364). 1 (a E .880, b 
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Table: A = ab  = 1.0 Meters Squaxed; (Z/u) = (g/b) = ( l / r )  

a 
.65 
.70 
.75 
.80 
.83 
3 5  
.86 
.87 
.88 
.89 
.90 
.91 
.93 
.95 

P 
D.5524 
0.6372 
0.7307 
0.8316 
0.8937 
0.9345 
0.9572 
0.9785 
0.9998 
1.0211 
1.0423 
1.0635 
1.1058 
1.1478 

2 N E a/b E u 
.4225 
-4900 
-5625 
.6400 
-6889 
-7225 
-7396 
.7569 
.7744 
.7921 
.8100 
3281 
.8649 
.9025 

Sref = -05 
1.7005 
1.7019 
1.7029 
0.0423 
0.0387 
0.0357 
0.0325 
0.0224 
0.0000 
0.0205 
0.0287 
0.0306 
0.0309 
0.0302 

Spf = -10 
3.3506 
3.3618 
3.3696 
0.0834 
0.0743 
0.0616 
0.0469 
0.0193 
0.0000 
0.0196 
0.0401 
0.0500 
0.0564 
0.0572 

Spf = -25 
8.7111 
8.7960 
8.9389 
0.1856 
0.1392 
0.0726 
0.0328 
0.0045 
0.0001 
0.0160 
0.0404 
0.0632 
0.0942 
0.1097 

Spf = -50 
12.2702 
10.2591 
0.2759 
0.2574 
0.1346 
0.0379 
0.0071 
0.0052 
0.0002 
0.0170 
0.0406 
0.0658 
0.1170 
0.1437 
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7.0 A §MART DYNAMIC VIBRATION ABSORBER A 
COLLATERAL DAMPING APPLICATIONS TECHNOLOGY 

The dynamic vibration absorber is a subsidiary dynamic system to be attached to 

the primary system. Typically the primary system is exhibiting an undesirable dynamic 

response to a simple harmonic forced vibratory excitation, usually inherent in the system 

and not subject to significant frequency or magnitude changes to reduce the undesirable 

response. Accordingly the absorber is tuned to the offending forcing frequency and generates 

an opposing force, thereby reducing the response to zero (i.e., enforcing a node) or to an 

acceptable level. However in the absence of damping in the absorber, two new responses 

result at neighboring frequencies near the original offending one. When damping is 

introduced into the absorber these neighboring responses can be significantly attenuated. 

However this results in a significant reduction in the efficiency of the absorber compared to 

an undamped one as illustrated in Figures 12 and 13 (cf. References 4, 5, and 6). 

A smart dynamic absorber would be one which benefits from damping at the “side” 

frequencies by attenuating these new responses to a negligible level, while ignoring the 

presence of damping at its primary frequency, thereby having the potential to have the 

“best of both worlds”: full vibration suppression at the primary frequency with negligible, 

damped response at the “side” frequencies. This can be accomplished via the principle of the 

“notch filter.” In effect the damper valve is sharply frequency sensitive so that it produces its 

normal, large damping magnitude, except over a very narrow range of frequencies centered 

at the primary excitation frequency. A classical dynamic system where this is the case is 

the “Bridge-T Network” familiar to electrical engineers. Fig&es 14 and 15 illustrate such 

a network and its frequency response characteristics. Figures 16, 17, and 18 illustrate a 

purely mechanical dynamic system with similar characteristics. It should be recognized that 

the frequency sensitive damper valve results in a closed loop dynamic system. As in all 

such systems an engineering “trade-off7 must be examined. The “loop gain” and optimum 

efficiency of the “smart” dynamic absorber as a closed loop system must be weighed against 
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the transient response characteristics of the new system. Generally the transients can be 

expected to be more “skittish” with the “smart”absorber. In fact, dynamic instability can 

ensue in the closed loop system if insufficient care is taken in adjusting the loop gain of the 

valve-absorber- primary system. 



8.0 DYNAMIC STABILITY 

BOUNDARIES FOR BINARY SYSTEMS 

The notion of a quartic damping interaction polynomial equation developed above can 

be extended to include the dynamic stability boundaries for binary systems (Ref. 7). That 

is systems which can be characterized by two degrees of freedom and in which both energy 

input and energy dissipation are factors. In such systems, the various parameters, especially 

the frequency proximity of the pair of oscillators comprising the system, determine the 

boundaries of dynamic stability and the “trade-offs” useful in preliminary design analysis. 

Dynamic stability boundaries are now developed for linear, two-degree-of-freedom sys- 

tems with damping and elastic couplings. Special emphasis is placed on the influence of 

natural frequency proximity and those instabilities which stem from skew symmetric stiff- 

ness properties. These arise in numerous engineering and physical systems, but especially 

in aeroelasticity and flight dynamics, as in the case of wing flutter and aircraft stability and 

control characteristics, respectively. New insight is provided into the destabilizing effects of 

the dreaded modal “resonance.” 

The generalized co-ordinates of the binary system are denoted by q1 and q2. These 

represent modes of undamped free vibration, the natural frequencies of which are w l  and w2, 

and the generalized masses of which are M11 and M22, respectively. The damping matrix 

is symmetric and positive definite with elements C11, C12, and (722. The stiffness matrix is 

skew-symmetric and positive definite with elements K11, K12, and K22, and K11 = IMllw?, 

K22 = M22w;. The equation of the system is 

The system characteristic values X can be developed as follows. Let 

{ ;;} = { 
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and refer these characteristic values to the natural frequency w l ,  where q ( X / q ) .  

Upon introducing the dimensionless parameters p f (C22/C11)/(M22/Mll) > 0, [ 3 

(c11/2~11~1) > 0, s2 3 (c11c12-c~2)~~11~22w~ > 0, r2 K ~ / M ~ ~ M ~ ~ u $  > 0, 

and r 3 q/q, the system characteristic equation becomes 

At neutral stability a sustained oscillation will occur at dimensionless frequency v, so that 

q = hjv. It follows at once that 

v2 = (r2 + p)/(l + p) and v4 - (1 + r2 + 6 2 2  )v + (r2 + r2) = 0- 

Solving for r2 as a function of S2, r2, and p gives 

Upon introducing scale changes through the new variable E ,  where 

E (r2 - 1)/(1+ p) and r2 5 1 + (1 + p ) E ,  

and noting that 

v 2 =  1 + E ,  

the stability boundaries take the simple parabolic form 

In this form the destabilizing and stabilizing parameters r2 and S2 are related via the 

new frequency proximity variable E. The dreaded “modal resonance” phenomenon is now 

especially transparent. When the natural frequencies w l  and w2 are equal, E = 0 and 1: = 6: 

that is, the damping characterized by S is needed to provide neutral stability in the presence 

of the destabilizing effects of r. Anything less results in a divergent oscillation. It is also 

seen that when I’ = S and E = 0, the frequency of the sustained oscillations is w l  = w2. 
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More generally, the frequency of the sustained oscillations at neutral stability differs from 

w l  when T # 1. In Figures 19 and 20 are shown the stability boundazies and instability or 

“flutter” frequency, respectively, as functions of the frequency proximity variable E .  

The physical significance of the results illustrated in Figures 19 and 20 can be considered 

by an example calculation. Suppose the modal damping parameters C11 and C22 and the as- 

sociated generalized mass parameters Mil and M22 are such that p = (C2z/C11)/(M22/M11) 

= 0.50. Also, the consolidated damping-energy dissipation parameter 62 = 0-20 and the 

modal frequency ratio parameter w2/wl = 1.10. The frequency proximity variable E then 

is 0.1400. It follows at once that r2/p = 0.4756 md, for p = 0-50, r2 = 0.2378. Accord- 

ingly, neutral dynamic stability results when r2 = K;2/MllM22w;f = 0.2378. W e n  K12 > 
1/2 2 0.4876(MilM22) wl, a divergent oscillation occurs. The frequency of this instability, the 

“flutter” frequency, follows as illustrated in Figure 20 as wflutter = 1 . 0 6 8 ~ ~ .  Since also 

and ( w ~ / u I ) ~  1.21, it follows that dynarnic instability occurs for K12/(K11K22)p/2 > 0.4433. 

In conclusion, it is to be noted that the binary system stability boundaries are universal 

ones. They yield the levels of the destabilizing parameters in terms of generalized damping 

and frequency proximity parameters. It is also clear that the modal natural frequency ratio 

is of crucial importance in binary system dynamic stability. Severe and perhaps unstainable 

damping requirements result when the two natural frequencies match or nearly match. Hence 

the concept of the “dreaded modal resonance.” 



9.0 CONCLUSIONS 

Methods for approximating the effects of viscous or equivalent-viscous type damping 

treatments on the free and forced vibration of lightly damped aircraft-type structures have 

been developed. Similar methods have been developed for dynamic hysteresis-viscoelastic- 

type damping treatments. In all cases it is clear that these relatively simple, energy- 

based met hods yield accept ably accurate engineering approximations for preliminary design 

purposes and in most instances can supplant much more complex, finite element-type digital 

computer computations . 

Selected illustrative computational examples €or a variety of structural elements have been 

carried out. This type of computation should be continued and extended to illustrate the 

procedures and methodology for an entire resonating airframe. This should be accompanied 

by suitable experimental validation as well as comparison with the digital computer, finite 

element approach. 

It is noteworthy that in the case of lightly damped structures, the apparent complication 

of intermodal coupling due to damping can be neglected with one exception. In the case 

of differing modes having matching or nearly matching natural frequencies it is necessary 

to carry out a relatively simple interaction calculation which determines the distribution of 

damping between such modes. 
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Figure 1.- Equivalent viscous damping as a function of loss factor. 
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Figure 2.- Elastic rod embedded in viscoelastic material. 
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Figure 3.- Elastic rod with viscous damper at free end. 
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Figure 4.- Effective viscous damping ratio as a function of neighboring 
mode frequency separation ( <, = z2 = .02). 
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Figure 5.- Effective viscous damping ratio as a function of neighboring 
mode frequency separation ( <I = c 2 =  .OS>. 
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Figure 6.- Effective viscous damping ratio as a function of neighboring 
mode frequency separation ( = (2 = . l o ) .  
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Figure 9.- Discrete model of a cantilever beam with a viscous damper 
at the free end. 
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Figure 10.- A discrete model of coupled bending and torsion with a viscous 
damper for bending displacement. 
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Figure 11.- Rectangular plate with spot damping. 
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Figure 14.- Parallel T-network notch filter. 
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Figure 15.- Frequency response characteristic of notch filter. 
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Y b 
Figure 16.- Mechanical analog of notch filter - smart dynamic absorber. 

Figure 17.- Frequency response of mechanical notch filter as a function of 
frequency ratio, viscous damping ratio, and feedback gain. 
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APPENDIX A 
A CLOSED FORM SOLUTION TO THE DAMPING 

INTERACTION QUARTIC EQUATION 

The damping interaction quartic equation can be written in the form 

f (q) q4 + aq3 + bq2 + cq + d = 0, 

where 

and 

The quartic polynomial may be factored into the product of two quadratic polynomials 

$(q> = f1(7?)f2(77), where 

and 

The parameter y is known as the resolvent and is a real root of the cubic equation 

F(y) 8y3 - 4by2 + 2(ac - 4d)y - [c2 + d(a2 - 4b)] = 0. 

This approach is due to Ferrari. The cubic itself also has a closed form solution due to 

Tartaglia and Cardan, thereby completing the closed form solution to the quartic equation. 

Rewrite the cubic equation for the resolvent in the form 

F(y) = y3 + By2 + cy + D = 0, 
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where 
1 1 
2 4 8 

B --b, C = -(ac - 4 4 ,  D -- [c2 + d(a2 - 4b)] . 

The cubic equation can be reduced to one with the second degree term absent by the change 

of variable x = y - g. This results in the reduced cubic 

F(x)  x 3 f p x  + q = 0' 

where 
B2 BC 2 ~ 3  p = C - -  and q s D - - + -  
3 3 27 

Changing variables once again, let x = 2 - &. This yields a quadratic equation in the variable 

23: 

3 2  3 P3 
(2 ) + q(2 ) - - = 0. 27 

Solution of this quadratic equation yields 

23 = -- f a, 
2 

where 

RE-+- .  P3 q2 
27 4 

The three cube roots of z3 yield X I ,  x2, and x3: 

In turn the three roots of the resolvent cubic follow: 

In cases of practical engineering interest y1 will be the real root of interest in determining 

the effective damping in each of the interacting modes whose natural frequencies are close 

to one another. Then from f l ( q )  and f 2 ( q )  above and neglecting the very small term 
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In the case of a frequency match when 

(z)2 = 1, y1= 1, 

and 

<Effective = 0 or (<*a -f- Cpp). 

In the case of widely separated natural frequencies where (2) << 1 and the system is either 

spot damped or lightly damped 

Since neighboring modes will then be effectively uncoupled by damping 

This implies that 

(Cas + Cpp,2 + (2Y - 1) E.! (Cas - Cpp,2. 

Solving for y1 when 
1 (z) K 1, Y = -(I 2 - 4CaaCpp). 

Thus it is seen that the resolvent varies over the range 

*This is exactly zero in the case of spot damping. 
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APPENDIX B 

INTERACTION QUARTIC EQUATION 
AN APPROXIMATIVE SOLUTION TO THE DAMPING 

It has been shown in Appendix A that the effective damping fraction is given by 

where y1 is the real root of the resolvent cubic equation. It has also been shown that as 

(2) varies from zero to unity, the extremes of widely separated and matching natural 

frequencies of neighboring modes, the resolvent varies in the range 

2 

1 
2 -0 - 4CaaSpp) < Y1 1- 

Now consider the mean damping fraction < given by 

and the ratio ;r given by 
r = (  cE ffect ive ).  

The foregoing equation for the effective damping fraction can be rewritten as follows: 

2 2 
It is seen that as (2) --+ 1, y1 -+ 1, and F --+ 0 or 2. It is also seen that as (z) --+ 0, 

311 -+ ;(I  - 45aacpp) and F -+ ( y )  or (9) . SEffedive approaches or cpp of practical 

engineering interest in the range of modal frequency ratios near a frequency match. In this 

case 
2 (2) =1-s2 ,  

where 

0 < s2 << 1. 

80 



For 62 << 1, the binomial expansion gives the approximation for T: 

r . l i{ l -  [ (1 - Y1) - ($) I}= [ (1 - Y1) - (7) "'1, {2- [ (1 - Y1) - (g) ] } -  
(Cas + (Cas + (Caa + CppI2 

Approximating the resolvent y1 as 

y 1 a -  ($) -7264 

yields the approximation for T as 

y may be approximated by reference to several numerical solutions to the interaction quartic. 

Referring to the data in Figures 4, 5, and 6, 

A geometric interpretation of the damping interaction between neighboring modes is also 

possible as follows: rewrite the Ferrari closed form solution for the effective damping fraction 

as 

introducing the new variable 

yields a family of ellipses whose semi-major axis depends on the damping fraction levels of 

the neighboring modes; the general equation is given by 

2 2  
(T - 1) + q = 1; 
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this is seen to be a circle of unit radius with center at abscissa q = 0 and ordinate r = 1. 

Approximating the resolvent y1 or solving the resolvent cubic precisely yields the value of q 

and, in turn, leads to values of r. 
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APPENDIX C 
DIGITAL COMPUTER SOLUTION TABULATION 

FOR DAMPED BENDING VIBRATION 

03 



c = o  
SYSTE)? EIGENVALUES DARPIbiG 

REAL 1!?861NARY 

SYSTEH EIGENVECTORS 

ROW GO1 1 

REhL IHRGI NARY 

PERCENT CRITICAL 

2 

REBL IRAGINBRY 

i 0.1000000Et01 0.1064962E-27 0,1000000E+01 -0.4681889E-27 
2 -0.6989843Et00 0.2269553E-26 -0. b989843EtO0 -0.5413558E-27 
3 0.2151?13E+00 -0. i010531E-26 0.2151913E+00 0.5053640E-28 
4 0.4986863E-25 0.1543686E+92 0.9043501E-26 -0.1543686Et02 
5 -0.2343864E-25 -0.1079013Et02 -0.1047923E-25 0.1079013E+02 
6 0.1476U&E-25 0.3321879Et01 0.4132842E-26 -0.3321879EtDi 

SYSTEH EIGENVECTDAS 

ROW COL 3 4 

REAL I f l ~ E I N A ~ Y  RE& IRAGINARY 

i o . w i 9 2 ~ t 0 0  0 , 1 ~ e 9 8 4 ~ - 2 t  o.e417iv~+,oo -0.1291827~-21 
2 0.1000000E+01 -0.4634716E-25 0.10000#OE+01 0.1565iOOE-25 
3 -0.6632931Et00 -0.7749615E-21 -0.6632?31E+UO 0.7725248E-21 
4 -0,3344544E-21 0.4836094E+01 -0.3350736E-21 -0.4836094E+#l 
5 -0.5001 1495E-21 0.574549bEt01 -0.5044752E-11 -0.5745496E+01 
b 0.2752724E-20 -0.3810948Et01 0.2746154E-20 0.3810948E+Ot 

SYSTEil EIGENVECTORS 

RU# CCL 5 b 

REAL I i l A G I N l R Y  REAL I R A G I ~ A R ~  

1 0. i s ~ ~ i ~ t ~ o  -0. i 5 9 t ~ 4 e ~ - 2 5  0.15~4141~t00 0 . ~ 7 7 2 ~ ~ - 2 5  
2 0.5316363E+00 -0.1732302E-25 0,53lb363€+00 0.3347339E-25 
3 0.1000000E+Uf -0.3175165E-28 0.1000000E+OI -0.3549874E-29 
4 0.4021223E-25 -0.1372085Et00 0.7748807E-25 5.1372085Et00 
5 0.21 38414E-24 -0.4663584E+00 0.4121986E-24 0.4663584Et00 
5 0.4810201E-24 -0.8772131Et00 0.9268212E-24 0.8772131E+00 



c = .1 

SYSTEH EIGENVALUES DBBPING 

REAL IMAG INARY PERCENT CRITlCtiL 

-0.15084290E-122 -0.15436854E+02 0.97716086E-02 
-0.1508429QE-02 0.15436854Et02 0.91316086E-02 
-0.10237098E-01 -0.57453482Et01 0.17818036EtPO 
-0.10237099E-01 0.57453482Et91 0.178189JbE+#O 
-0.38254473E-01 0.87646053E+00 0.43608019it01 
-0.38254479-01 -0.87640033EtQ0 0.436#801?E+01 

SYSTEN EIGENVECTORS 

ROW COL 1 2 

HEAL MAGINARY REAL IHAGINARY 

SYSTEM E I GENVECTDRS 

ROW CDL 3 4 

HE RL IMRGINARY REAL IIIAGINARY 

1 0.8416667E+00 -0.3044757E-02 0.8416667E+00 0.3044757E-02 
2 0. lOOOOOOEtOl B. 1902775E-15 0. 1000000Et01 -9,1615461E-16 
3 -0.6630879Et00 0.122933BE-Q1 -0. b630879Et00 -0.1229338E-01 
4 -0.2610941E-0! -0.4i35637E+Ol -0.2610941E-01 0.48356J7Et01 
5 -0.lU2371OE-01 -0.5745348EtOl -0.lOZ71OE-01 0.5745348Et01 
6 0,7741785E-01 0.3809545EtOL 0,774t785E-01 -0.3809545E+?l 

SYSTEM EIGENVECTORS 

ROW COL 5 6 

REAL IBBliINhRY REAL IHAGINARY 

1 0.1563800E+00 0.7433139E-03 0.1563800EtO0 -0.7433139E-03 
2 0,5315826E+00 0.1177009E-02 0.5315826Et00 -0.1177009E-02 
3 0.10#0000E+01 0.2943609E-16 0.1000000E+01 -0.8267042E-18 
4 -0,6533677E-02 0.1370231E+00 -0.6633677E-02 -OS137023!E+00 
5 -0.2136644E-0f 0.4658341Et00 -0.2136694E-01 -0.4658341EtOD 
b -0.3825447E-01 0.8764003E+00 -Os 3825447E-01 -0.8764003E+00 
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c = .2 

SYSTEII EIGENVALUES DAMP !Ne 

REAL IHAGINAR! PERCENT CRITICAL 

SYSTEM EIGENVECTORS 

RDW CDL 1 2 

REAL IBAG I NGRY REAL I B G G I ~ R ~  

SISTEB E ~ 6 E ~ V E C ~ D R S  

ROW COL 3 4 

REAL f flAEINAPY REGL IBAG!NARY 

SYSTEI! EIGENVECTURS 

ROW COL 5 5 

R E X  IHAG~NARY REGL ~ ~ ~ ~ ~ I N ~ R Y  



c = . 3  

SfSTEY EIEEM1’4LUES 

REAL M A G  I NARY 

SYSTEM EIGEMVECTDRS 

ROW CDL 1 

REAL I RAG INkK I 

DRRPING 

PERCENT CRITICAL 

REAL !RhGfNhRY 

SYSTEM EIGENVECTORS 

REAL IRAGINAKY REAL IRAGINARY 

1 0,84 12475Et00 -0.9 1 14561 E-02 0.84 12475EW 0.9 1 1456 1 E-02 
2 0,1OO000OE+?l -0.3377290E-16 0.109?000E+01 -0.2057274E-16 
3 -0.6614491E+00 0.3680585E-01 -0,6614491€+00 -0.3680585E-01 
4 -0,7815575E-01 -0.48319@6Et01 -0.7815375E-01 0.483198bE+Ol 
5 -0, 3Ob66VE-01 -0.57441t7E+OI -0.3066659E-01 0.5744167Et01 
6 0,2317033EtOQ 0.3798345E+01 9.2517033EtOO -0.3798345EtOl 

SYSTEM EIGENVECTORS 

REAL IRAGINARY REAL IllA6INRRi 
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c = .4 

SYSTEH E16EIV4LUES I1AMPING 

REAL IHA6 INARI PERCENT CRITICAL 

-0. 6#2?8852E-O2 0.15436706E+02 0.3?061?91E-01 
-0.50298852E-02 -0.15436706E+02 0.3?0;1991€-01 
-0.40836695E-01 -OZ57431354E+01 0.71103430Et00 
-0.40836695E-01 0.57431354EtOl ?.71103430E+0# 
-0.15313342E+00 -0.86409629E+00 0,17449901E+02 
-0.15313342E+00 0.86409629E+00 0.17449901E+02 

SYSTEH EIGENVECTORS 

ROW COL 1 2 

REAL IMAGlNARY REAL IMA6IIRRY 

1 0.1000000E+01 0.4678332E-16 0.1006#0OE+01 0.4803016E-16 
2 -0,6?89732E+00 -0.43G5513E-03 -0.6989732E+90 0.4305517E-03 
3 0.2150363E+00 0.5819086E-02 0.2150363E+00 -0.5819086E-02 
4 -0.6029885E-02 0.1543&71E+#2 -0.6029885E-02 -0.1543671Et02 
5 0.1086103E-0! -0.lO78?84E+OZ 0.1086103E-01 ?.1078?84E+O2 
6 -0.9112416E-01 0.331?418E+01 -0.9112416E-01 -0.3319418E+01 

SYSTEM EIGENVECTORS 

RO# COL 3 4 

REAL I M G I N A R Y  REAL INAGINARY 

1 0.8408819E+00 -0.1212982E-01 0.8408819E+00 0.1212982E-01 
2 0.1000000Et01 -0.2569559E-16 0.1000000E+01 -0.3174002E-16 
3 -0.6600196Et.00 0.4898799E-01 -0.6600196E+00 -0.4898799E-01 
4 -0.1040020E+00 -0.4828803Et01 -0.1040029E+00 0.4828803E+01 
5 -0.4083670E-01 -0.574-3135E+01 -0.4083670E-01 0.5743135EtOl 
6 0.3982977Em 0.3788581E+01 0.3O82?77E+OO -0.3788581EtOl 

SYSTEti EIGENVECTORS 

ROW COL’ 5 6 

REAL IMBfiINARY REBL I HA6 I NARY 

1 0.1558699E+00 -0.292292?E-02 0.1558699Et00 0.2?22?29€-02 
2 0.530777?E+OU -0.4629492E-02 0.5307779Et00 0.462M92E-02 
3 0.1004000E+Ol 0.4878910E-18 0.1O00060E+01 0.2981556E-18 
4 -0.2639459E-01 -0.1342390E+O# -0.2639459E-01 0.1342390E+00 
5 -0.8528O17E-Ol -0.4579343Et00 -0.8528017E-01 0.4579343€+00 
6 -0.1531334Et00 -0.8640963ENO -0.1531334Et00 0.8640963E+00 

88 



c = .5 
SYSTEM E! GENVALUES DAUPINE 

HEAL f HAGIN~RY PERCENT CRITICAL 

-0.753448tOE-02 0,15436617E+02 0.48809172E-01 
-0.75344860E-02 -0.15436617E+02 0.48809172E-01 
-0.50962256E-01 -0.57418120Et01 0.88752904Et00 
-0.50962256E-01 0.57418120E+01 0.88752903Et90 
-0.19150326EtOD -0.8566101 lE+OO 0,21817386EtOZ 
-0.19150326EtO0 0.8566101 lEt00 0.21817386Et02 

SYSTEM EIGENVECTORS 

BDW CUL 1 2 

REAL IMAGINARY HEAL IHBG f NAH Y 

1 0,!000000E+01 -0.2626480E-16 0.100000OE+0! 0.5708324E-16 
2 -0.5989670EtO0 -0.5379923E-03 -0.6989670Et00 0.537?923E-63 
3 0.2149493E+00 0.7271004E-02 0,2149493Et00 -0.7271004E-02 
4 -0.7534486E-02 0.1593662EtO2 -0.7534486E-02 -Om1543662E+02 
5 0.!357114E-01 -0.1078968Et02 0,1357114E-01 0.1078968E+02 
6 -0.1138592Et00 0.3318035Et01 -0.1138592EE+00 -0.3318035Et01 

SYSTEtl EIGENVECTORS 

ROW COL 3 4 

RERL IHAGINARY REAL IUAGINIIRY 

1 0,8404135Et00 -0.1512553E-01 0,8404135E+00 0.1512553E-01 
2 0.1000000E+01 0.5597194E-17 0.1000000E+01 -0,2141299E-17 
3 -0.6581876Et00 0.6109639E-01 -0.6581876Et00 -0.6109639E-01 
4 -0,1296773Et00 -0.4824725Et01 -0.1296773Et00 0.4824725Et01 
5 -0.5096226E-01 -0.5741812Et01 -0,5096226E-01 0.5741812E+OL 
6 0.3843467Et00 0.3776076E+01 0.3843467EtOO -0.3776076EtUl 

SYSTEH EIGENVECTORS 

ROW COL 5 6 

RERL IHAGINARY REAL IHAGINARY 

1 0.1555649EtOO -0.3615637E-02 0.1555649Et00 0.3615637E-02 
2 0.5302966E+00 -9.5727494E-02 0.5302966Et00 0.5727494E-02 
3 0.100000OE+01 -0.2954451E-17 0.1000000Et01 -0.4526544E-17 
4 -0.3288838E-01 -0.1325661Et00 -0.3288838E-01 0.1325661E+00 
5 -0.1064598Et00 -0.4531606Et00 -0.10645?8E+50 0.4531606Et00 
6 -0.1915933Et00 -0.8566101Et00 -0.1915033E+00 0.8566101Et00 
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c = 1.0 

BANPINS 

SYSTEM EIGENVECTORS 

ROW CDL 1 

REAL IMAG!MAftY 

PERCENT CRITICAL 

2 

REAL IFIAGINARY 

SYSTEM EIGENVECTDRS 

ROW COL 3 4 

REAL INAGIMARY HEAL INAGINARY 

1 0.8365826Et00 -0.2964796E-01 PE8165826E+QO 0,2964796E-01 
2 0.10OOOOOE+Ol -0.2481468E-lb 0.1000000E+01 -0.7535205E-17 
3 -0,6431830Et00 0.liP9147Et00 -O,6431830E+UO -0.1199147€+00 
4 -0,2540201Et00 -0.4791396Er01 -Os254O2@1E+0O 0.4791396Et01 
5 -0. iO05405EtOO -0.5730907E+01 -0.1005405E+00 0.5730907Et01 
6 0.7518855Et00 0.3673Q66Et01 0.751895bEt00 -0.36739bbEt01 

SYSTEN EIGENVECTORS 

ROW COL 5 6 

REAL InAGiNARY REAL I#AGI#AltY 

1 0.1530536E+00 -0.6579089E-02 0.1530536E+QO 0.6579089E-02 
2 0.5263284Et00 -0.1043489E-01 0.5263284Et00 0.1043489E-01 
3 0.100000OEt01 -0.2591243E-16 0.1000000E+01 0.7909255E-36 
4 -0,6404294E-Oi -0.1185180E+00 -0.6404294E-01 0.1185180E+O# 
5 -0.2105935EtOO -0.412251bEt00 -0.2105935E+00 0.4122516EtO0 
b -0.3844382Et00 -0.7T08812Et00 -0.3844382E+O0 5.7?08812E+00 



C = 1.5 

SYSTEM EI~E~VGLU€S DAtPlNG 

RER? IMGGINARY PERCENT CRITICAL 

SYSTEM EIGENVECTORS 

REAL IMAGINARY REG? I FAG Inanr 

SYSTEM EIGENVECTORS 

ROW COL 3 4 

SYSTEM EIGENVECTORS 

ROW COL 5 6 

REAL IMRGINARY REAL IIVIGINARY 

1 0,1489885E+00 0.8088565E-02 0,1489885Et00 -0.8088565E-02 
2 0.5198839Et00 0. 1285618E-01 0.5198833E+00 -9.1285618E-01 
3 0.lOOOOOOE+Ol -0.139591OE-17 0.1000000E+01 0.1680513E-16 
4 -6.9181317E-01 0.9428300E-01 -0.?lB1317E-01 -0.9428300E-01 
5 -0,3101656Et00 0.3379096EtOO -0.3101656Et00 -0.3379096Et00 
6 -0.580177bEt00 0.6643186Et00 -0.5891776Et00 -0.6643186Et00 
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c = 2  

SYSTEN EIGENVALUES DANPIN6 

REAL IMAGINARY PERCENT CRITICAL 

-0,29666716E-01 -0.15432970Et02 0.19222911E+00 
-0.296641716E-01 0.15432970E+02 0.1922291 iEt.00 
-0.19036224Et00 -0.56894674Et01 0.33439998Et01 
-0.19036224Et00 0.56894674E+Ot 0.33439998Et01 
-0.77997104E+00 OZ41939680E+00 0, 880747?3E+02 
-0.77997104E+00 -0.41939680Et00 0.88074793EtO2 

SYSTEM EIGENVECTURS 

ROW CUL 1 2 

REAL INAGINARY REI? INAGINARY 

1 0.1000OOOE+01 0.2726768E-16 0.10000OOEtO1 0.5421031E-19 
2 -0. 69871 l l E t 0 0  0.21 19552E-02 -0.6?87111E+00 -0.2119552E-02 
3 0.2113789Et00 -0.2861587E-01 0.2113783EtOO 0.2861587E-01 
4 -0,2966672E-01 -0.1543297E+02 -0.2966672E-01 0.1543297Et02 
5 0.5343944E-01 0.1078312Et02 0.5343944E-01 -O.t07831?E+O? 
6 -0,4478987Et00 -0.3261355E+?l -0,4478987Et00 0.3261355Et01 

SYSTEH EIGENVECTORS 

ROW CUL 3 4 

REAL INAGI NARY REAL INAGINARY 

1 0,8224784E+00 -0.5479012E-01 0.8224784E+00 0.5479012E-01 
2 0.1000000E+01 0.4387631E-18 0.1000000Et01 0.110453tE-16 
3 -0.5876064E+00 0.2227034Et00 -0.5876064Et00 -0.2227034E+O0 
4 -0.4682954Et00 -0.4669034Et01 -0.4682954Et00 0.4669034EtQt 
5 -0,1?03622E+00 -0,5689467E+01 -0.1903622E+90 0.5689467EtOl 
6 0.1378922Et01 0.3300773Et01 0.1378922Et01 -0.3300773Et01 

SYSTEN EIGENVECTORS 

RDW CUL 5 6 

REAL I HAGINARY REAL IHA6 INARY 

1 0,1435474Et00 0.6578427E-02 0.1435474EtOO -0.6578427E-02 
2 0.5112140E+00 0.1048759E-01 0.5112140E+OO -0.1048759E-01 
3 0.100000OE+01 -0,3930233E-17 0.1000000E+01 0.234729RE-16 
4 -0,1!47218E+00 0.5507235E-01 -0.1147218E+OO -0.5507235E-91 
5 -0.4031306Et00 0.2062215E+00 -0.4031306E+00 -0.2062215Et00 
b -0.7799710EtOO 0.4193968E+O0 -0.7799710Et00 -0.41?3968E+QO 
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APPENDIX D 
DIGITAL COMPUTER SOLUTION TABULATION FOR 

DAMFED, COUPLED BENDING-TORSION VIBRATION 
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c = 0.00 

SYSTEM EIGENVALUES 

REAL I HAG I NARY 

SYSTEM EIGENVECTURS 

!?OW GO! 1 

HEAL IMt tGI  NARY 

DAHPING 

PERCENT G R I T I C A L  

2 

REAL IHAGINARY 

SYSTEM EIGENVECTORS 

ROW COL 3 4 

REAL IHAGINARY REAL I H A G I N I R 1  



C = 0.00 ( con t inued)  

HOW COL 5 6 

HELL I ~ A 6 i N A R Y  REAL It!AGIWAHY 

SYSTEM ElGENVECTRRS 

ROW CRL 3 e 

REAL INP6I WARY REAL I M G I H A R Y  

SYSTEM EIGENVECTORS 

ROW COL 9 10 

HEAL IMAGIWARY REAL It!AGINAR? 
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C = 0.00 (concluded) 

ROW I;Oi 11 12 

REA!. IRAGINARY REAL I n A ~ r ~ ~ ~ y  

0.9425783E-20 
0.34!250&E-18 
8.3826565E-20 
0.4384725E-18 
-0. !148952E-19 

0,7370363E-02 
4.136?814E+OQ 
0.2574701E-01 
0.2574722EtO-3 
0.4946374E-01 

3459670Et00 

-0.4175283E-25 

0.2129WlE-Ol -0.8705053E-?0 
0.394796BEt00 -0.3151563E-18 
D.7420595E-01 -0.722817IE-20 
0,?420656E+OO -0.4049437E-18 
0,1425604EtQO 0.1061083E-IY 
0,1000000E+01 -0.lO48617E-24 
0.713221 OE-20 -0.7390363E-02 
-0. WI1736E-l? -0.lSb9814E+00 

0.4125867E-l? -0.2574701E-01 
0.925W#BE-19 -0.2574722Et00 
0,96845t4E-19 -0.4?44374E-01 
0,5597333E-18 -Qs34b9670E+00 



c = .1 

SYSTEII EIGENVALUES 

REAL iI!AGINARY 

-0.62898700E-02 
-0.62898700E-02 
-0.331 1771 5E-01 
-0.331 17715E-01 
-0.47024581E-02 
-0.47024581E-02 
-0.31 190537E-01 
-0.31 1W537E-01 
-0.24363184E-81 
-0.24363184E-01 
-0.33628621E-03 
-0.33628629E-03 

0.15666400E+02 
-0.15666400E+02 
-0,6308261 BEN1 
0.63082518E+#l 
0.17995853EtOl 

-0.17995853E+01 
-0.13384467Et01 
0.13384467Et01 
-0. 94100220E+00 
0.94100226E+00 
0.34697913EtOO 

-Q834b97913E+00 

SYSTEM EIGENVECTORS 

ROW COL 1 

REAL IIIAGINARV 

DAHPING 

PERCENT CRITICAL 

2 

REAL IBAG I NARY 

1 0.1000OOOE+01 0.5055093E-17 0.1000000E+01 -0.2368304E-17 
2 -0.3899214E-05 -0.4676142E-07 -0.3809214E-05 0.4676142E-07 
3 -0.7158054E+OO -0.4332292E-03 -0,7158054EtQO 0.4332292E-03 
4 0.9272907E-03 0.1213413E-04 0.9272907E-03 -0.1213413E-04 
5 0.4505361Et00 0.6261089E-02 0,4505361E+00 -0.6261089E-02 
6 -0.2257298E+00 -0.3136589E-02 -0.2257298Et00 0.3136589E-02 
7 -0.6289870E-02 0.156&40E+02 -0.6289870E-02 -0.156&40E+02 
8 0.7565426E-06 -0.5967637E-04 0,756542bE-Ob 0.5967637E-04 
9 0.1128947E-01 -0.1121409E+02 0.1128947E-01 0.1121409E+02 

10 -0.1959307E-03 0.1452723E-01 -0.1959307E-03 -0.1452723E-01 
11 -0,iO09225E+UO 0.7058240EtOl -0, iOOQ225E+00 -0.7058240E+01 
12 0.5O55886E-01 -0.3536354E+?l 0,5055886E-01 0.3536354E+01 

SYSTEM EIGENVECTORS 

ROH COL 3 4 

REAL IHAGIMARY REAL I BAG I NARY 

1 -0.723726fE+?O -0.1663599E-01 -0.7237261E+00 0.lbb3599E-01 
2 -0.3547530E-03 -0.7900585E-05 -0.3547530E-03 0.7900585E-05 
3 -0.6962840E+O0 -0.2517155E-01 -0.6962840Et00 0.2517155E-01 
4 0.1341051E-01 0.1503608E-03 0.1341051E-01 -0.1503608E-03 
5 0.1000000E+01 -0.3374579E-16 0.1000000E+01 0.2648164E-16 
b -0.5065323E +Of) -0.7 137b 15E-04 -0.50 b5323Et00 0.7 1376 15E-04 
7 -0.8097605E-01 0,4566005E+01 -0.8097605E-01 -0.4566005E+01 
8 -0.3809035E-04 0.2238137E-02 -0.3809635E-04 -0.2238137E-02 
9 -O,1357294E+OO 0.4393176EtOl -0,1357294Et00 -0.4393176Et01 

11 -0.3311771E-01 -0.6308262E+01 -0.3311771E-01 0.6308262E+Ol 
12 0.1632493E-01 0.3195341Et01 0.1632493E-01 -0.3195341EtOl 

io o.s043~97~-03 -0.~460197~-01 o . m a 9 7 ~ - 0 3  o.a46oi97~-0i 



SYSTEM EIGENVECTORS 
C = .1 (continued) 

RQW CDL 5 6 

REaL !HAG INARY REAL I H A 6 1 ~ A ~ ~  

SiSTEM EIGENVECTOPS 

ROW COt 7 8 

REAL MAGINARY HEAL INAGINARY 

SYSTEM EIGENVECTORS 

ROW CUL 9 10 

R E M  MAGINARY REAL IHCIGINARY 

1 0.1577030E+00 -0.5132384E-03 0.1577030Et00 0.5132384E-03 
2 -0,6685217EtOO 0.8725714E-01 -0.6685217E+OO -0.8725714E-1)i 
3 0.5336765EtOO -0.8123087E-03 0.5336765EtOO 0.8123087E-03 
4 -0.7494751Et00 0. 6b64837E-01 -On74?4751E+00 -0.6661837E-01 
5 0.1000000E+01 0.1515173E-16 0.1000000Et01 -0.4171468E-16 
6 -0,1702802E+00 -0.4730163E-01 -0.1702802E+09 0.4730163E-01 
7 -0.4325106E-02 -0.1483864Et00 -0,4325106E-02 0,1483864E+00 
8 0,9839648E-01 0.6269545Et00 0.9839648E-01 -0.6269545Et00 
9 -0,1376644E-01 -0.5021710E+OC, -0, i376644E-01 0.5021710Et00 

10 0.80?7586E-01 0.703633?E+?O 0.8097586E-01 -0.7036333Et00 
11 -0.2436318E-01 -0.9410022E+00 -0.2436318E-01 0.9410022Et00 
12 -0.4036237E-01 0.1613864Et0O -0.4036237E-01 -0.1613864EtO0 



SfSIE14 EIGENVECTORS 
C = .1 (concluded) 

RDW CDL 11 12 

REAL M A G  I N A R l  REAL IBAGINARY 
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c = .2 

SYSTEM EIGENVALUES 

REAL I RAGIMARY 

-0.12573562E-01 
-0.125735b2E-61 
-6.661b173?E-Oi 
-0.65161739E-01 
-0.9078502bE-62 
-Os 90785025E-02 
-0.62464502E-01 
-6.62464502E-0I 
-6.49051767E-01 
-0.49051767E-01 
-0.57002982E-63 
-0.67002998E-03 

SYSTEM EIGENVECTORS 

ROW COL 1 

RE4L I t IAGINARY 

1 0.100000OE+Of 0.9202166E-17 
2 -0.3907563E-05 0.9348586E-07 
3 -OZ71578?2E+00 0.866666lE-03 
4 0.9268317E-03 -8.2425712E-64 
5 0.4502842E+00 -0.1251565E-01 
6 -??, 225663&E+00 0.6259909E-02 
7 -0.1257356E-01 -0.1566615E+02 
8 0.15124396-05 4.5964870E-04 
9 0,2256795E-01 6,1121365Ei+02 
10 -0.3916694E-63 -0.1451959E-01 
11 -0.2017338EtO0 -8.7054065E+01 
!? 6, IOl0620E+06 0.3534263E+61 

SYSTEN EIGENVECTORS 

ROW COL 3 

REAL IRhG INARY 

1 -a, 7233?87E+85 0.3328313E-01 
2 -9.3549465E-03 0.1590565E-04 
3 -0,6958687Et00 0.5035656E-01 
4 6.1341666E-01 -0.3006709E-03 
5 6.1000000E+01 0.284874IE-16 
6 -0.5065353Et00 0.1427249E-03 
7 -0.1620239E+OD -0.4563994EtOl 

9 -0.?715114E+00 -0.43?1519E+01 
10 6.1009377E-02 0.8462blOE-01 
11 -0. 66lb174E-01 0.6306055E+Ol 
12 0.3261323E-01 -0.3194249E+01 

9 -3.7&1~740~-04 - 0 . 2 2 m w ~ u  

DAMPING 

PERCENT CRITICIlL 

0.80259375E-0! 
0. W259375E-01 
6,1049!202E+01 
0.10491202E+61 
0.50490222Et00 
0.50490222E+QO 
0.46963747E+01 
0.46963747E+01 
0,516?41i8BE+01 
0,51924338Et01 
0.19308320Et06 
0. i9308324Et06 

2 

REAL IMAGINARY 

0.1#060OOE+Ol -0.6960967E-18 
-0,3907563E-05 -0.9348596E-07 
-0.7157892E+00 -0.866066lE-03 
0.9268317E-03 0.2425712E-04 
0.4502842E+00 0,1251565E-01 
-O,2256036E+00 -0.6269909E-02 
-0,1257356E-01 0.1566615E+?? 
0.1512439E-05 -0,5964870E-04 
0.2256795E-61 -0,1121365E+?'Tr 
-0.3q16694E-03 9.1451959E-01 
-0.2017338€+00 CS70540b5E+0i 
0,10!0b20Et00 -0.3534263Et01 

4 

REAL IRA6 IMARY 

-0.7233?97E+60 -0.3328313E-01 
-Os 3549465E-03 -0.15895656-04 
-0.6958687E+00 -0.5035656E-01 
0.1341666E-01 0.3006708E-03 
0.1000000E+01 0.2003064E-16 
-0.5065353EtO6 -0.1427249E-03 
-0.1620239E+00 0.4563994Et01 
-0,7&18740E-04 0.2239358E-02 
-0.2715114E+00 0.4391518E+01 
0.1008377E-02 -0,9462610E-01 
-0,6616174E-01 -0.6306055&+01 
9,3261323E-01 0.3194249E+01 



SYSTEtl EIGENVECTORS 
C = . 2  (continued) 

c ROW CDL 6 

REbL IHAGINARY REAL ItlRGINRRY 

1 0.7554707E-01 -0.1810115E-01 0.7554707E-01 0.1810115E-01 
2 -0.8105301E+00 -0.2146289E-01 -0.8105301E+00 0.2146287E-01 
3 0.2343985EtUC -0.5586735E-01 0.2343985EtOO 0.5586735E-01 
4 0.100~000E~Ol 0.4626833E-16 0.lOOOOOOE+Ol 0.1589034E-17 
5 0.4046413Et00 -10.9592703E-01 0.4046413E+00 0.9592703E-01 
6 -0.B23660Et00 ir.5411007E-01 -0.422366bE+OO -4.5411007E-01 
7 -0.3323259E-01 -0.135b730Et00 -0.3323259E-01 0.1356730Et00 
8 -0.3123293E-01 0.1457567EtOl -0.3123293E-01 -0.1457567EtOl 
9 -0.1025802Et.00 -0,420Q528Et00 -0. !025802E+?U 0.4209528E+0!? 
19 -0.9078503E-02 -0.1798049Et01 -0.9078503E-02 0.1798049Et01 
11 -0.176155OE+00 -0.7266939Et00 -0,1761550Et00 0.7266939E+00 
12 0.1011270EtQO 0.7589433Et00 0.1011270E+00 -0.7589433Et00 

SYSTEfi EIGENVECTDRS 

RDW COL 7 8 

REAL IRA6 I NARY REAL IHAGINARY 

1 0.1679596E+00 -0.2005777E-02 0,1679596E+O0 0.2005777E-02 
2 0.7499341E+!lO 0.1569677E+00 0.7498341EtQO -0.1569677Et00 
3 0.5498715Et00 -0.3159351E-02 0.5498715Et00 0,3159-S51E-U2 
4 0.1472464Et00 0.1610129E.iO0 0.1472464Et00 -0.1610129E+00 
5 0.1000000E+Ol -0.l841788E-16 O.l0000#OE+01 0.2424547E-16 
6 -0.7425739+00 -0.9525066E-01 -0.7425739EtOO 0.9525066E-01 
7 -0,1316207E-01 -0.2235014E+00 -0.1316207E-01 0,2235014E+O0 
9 0.1621537Et00 -0.1008159E+01 Oa162l537E+00 0.1008158E+01 
9 -0.3855371E-01 -1l.7319189Et00 -0,3855391E-01 0.731?189E+QQ 
10 0.205 1799Et00 -0.206 106 1 Et00 0.205 1799Et00 0.206 106 1 Et00 
11 -0.624t450E-01 -0.1331432Et01 -0.624645C.E-01 0.133!432E+01 
12 -0.8043523E-01 0.9946361E+00 -0.8043523E-01 -0.9946361Et00 

SYSTEH EIGENVECTORS 

ROW CDL 9 10 

RERL i ~ ~ 6 I ~ A R Y  REAL StlA6l~AR~ 

1 0.1577689Et00 0.1038491E-02 G.l577689E+00 -0.1038491E-02 
2 -0. 6469157EtOO -0.1744151Et00 -0.6469157Et00 0.1744151E+OO 
3 0.5337812EtOG 0,1643578E-02 0.5337812Et00 -0.lb43578E-02 
4 -0.7335710EtO0 -0.1334291E+O0 -0.7335710EtO0 0.1334291EtOQ 
5 O,1000000E+01 0.9812030E-17 0,10@0000E+Ol -0.3718813E-16 
6 -0.178951IE+00 0.9447302E-01 -0,178951 1E+00 -0.94473WE-01 
7 -0.8728455E-02 0.1490766EtOO -0.8720455E-02 -0.1490766EtDO 
9 0.1965944Et00 -0.6029273E+00 0.1965944EtOO 1).6029273E+00 
9 -0.2773646E-01 0.5044642E+00 -0.2773646E-03 -0.5044642E+00 

10 0.1621039E+00 -0.6868468E+00 0.162l039EtOD 0.6868468Et00 
11 -0.4965177E-01 0.9452278Et00 -0.4905177E-01 -0.9452278EtOQ 
12 -0.80520b6E-Gl -0.1737936E+O0 -0.8052066E-01 0.1737836Et00 



SYSTEM ElliENVEETORS 
C = .2 (concluded) 

R(14 COL 11 12 

HEAL IHUGINARV REUL ItiABINARY 

1 0.2117643E-01 0. 1642710E-02 0.2117543E-01 -0.1642710E-02 
2 0.3948161Et00 -0.27249216-03 0.3948161E+00 0.2724921E-03 
3 0.7377557E-01 0.5724280E-02 0. 7377557E-01 -0.572428OE-02 
4 0,7420889Et00 -0, X8573OE-03 0.7420889EtOU 0.3285730E-O3 

b 0.1000000E+01 0.5258381E-17 0.1000000E+01 -0.l6bO185E-16 
7 0,5558568E-03 -0.7349649E-02 0.5558558E-03 0.7349649E-02 
8 -0.3590976E-03 -0.1370071E+00 -0.359097M-03 0.1370071E+00 
9 0,193b982E-02 -0.2560510E-01 0.1936982E-02 0.2560510E-01 

10 -0.6112416E-03 -Oc2575l51E+!l0 -0.6112415E-03 0.2575161EtOO 
11 0.3721953E-62 -0.491910OE-01 0,3721953E-02 0.4919100E-01 
12 -0.5700299E-03 -0,3470!55E+00 -0.6700299E-03 0.3470155E+OO 

5 0. 1 4 m z ~ t o o  ( ~ . I O ~ W ~ B E - O I  0.141733z~t00 -0. i099wa~-oi  
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c = . 3  

SYSTEt4 EIGENVRLLiES 

REAL IMAG~NRRY 

-0,18845095E-01 
-0.18845095E-01 
-0.99058318E-01 
-0.9W58318E-01 
-0.12855529E-01 
-0.12855629E-01 
-0.93807180E-01 
-0.93807180E-01 
-0.74435443E-01 
-0.74435443E-01 
-0.99874304E-03 
-0.99874328E-03 

0,15665746Et02 
-0,15645744E+02 
0.63023818E+01 

-0, 63023818EtOt 
0.17956874Et01 
-0.17956874EtOl 
-0,13189978E+Ot 
0,1318?978E+~Ol 
0.95275050Et00 
-0. 95275050E+00 
0.34707548EW 
-0.34707548E+00 

SYSTE5 EIGENVECTORS 

RRW COL 1 

REAL IMAGINARY 

CAMPING 

PERCENT CRITICAL 

0,1202?483E+O0 
I1.12029483Et00 
0.1571555%+01 
0,15715659E+Ol 
0,71589855Et00 
0,71589855E+0C 
0.70940857Et01 
0.70940857Et01 
0.77889549Et01 
0.7788?549E+#l 
C.28775842Et00 
0.28775849EtOO 

RERL IRAGINIIRY 

1 0.1000000E+01 -0.9581637E-17 0,10OO@OOE+01 0.3098108E-16 
2 -0.3804816E-05 -0.1401363E-116 -0.3804814E-05 Q,t401343E-06 
3 -0.7!5762!E+00 -0.1298126E-02 -0.7157621Et00 0.1298126E-02 
4 0,9260674E-03 0.34357841-04 0.9260674E-63 -0.3635784E-04 

6 -0.2253936E+00 -0.93%705E-02 -0.2253935E+00 0.9396705E-02 
7 -0.1884510E-01 0,1566575Et02 -0.1884510E-01 -0.1566575Et02 
8 0.2267042E-05 -0.5?51)264E-U4 0.2267042E-05 0.5940264E-04 
9 D8338?47IE-01 -O,1121292E+02 0.3382471E-01 0.1121292E+02 
10 -0.5870246E-03 0.1450685E-01 -0.5870246E-03 -0.1450685E-01 
! 1 -0,3023231Et00 6.7047117EtOl -0. JQ23231E+00 -0.7047117Et01 
12 0,1514540Et00 -0.3530782Et01 0.1514549Et00 0.3530782EtOl 

5 0.4498650Et00 0.1875719E-01 0.4498650Et00 -0*187571?E-#l 

SYSTEM EIGENVECTORS 

RRW CRL 3 4 

REAL IMRGINARY RERL fRk6INARY 

1 -0.7228538Et00 0.~995251E-itl -0,7?28538E+00 -0.4995251E-01 
2 -0.3552705E-03 0.2371960E-04 -0.3552705E-03 -0.2371960E-04 
3 -0.6951773E+00 0.7556851E-01 -0,6951773Et00 -0.7556851E-01 
4 0.1342694E-01 -0.4508780E-03 0.1342694E-01 0.4508780E-03 
5 0.1000000Et01 0.1221083E-lb 0.1000000Et01 -0.3480289E-16 
4 -0,5065443E+00 0.2140181E-03 -0.5065403Et00 -0.2140181E-03 
7 -0.243215!E+00 -0.4560649EtFl -0,2432151E+00 0.4550449E+01 
8 -0.1142775E-03 -0.2241400E-02 -@.1142?75E-03 0.2241400E-02 
9 -0.4073?85E+00 -0.4348759Et01 -0.4073?85E+00 0.4388759E+01 

10 0.151155bE-02 0.8466636E-01 0,1511556E-02 -0.8466436E-01 
11 -0.9905832E-01 0.6302382Et01 -0.9905832E-01 -0.6302382Et01 
12 0.4882821E-01 -0.3192432Et01 0.4882821E-01 0.3192432E+0l 
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SYSTEFI EIGENVECTORS 

C = . 3  (continued) 
RD# CDL 5 6 

REAL I H L G S ~ A R r  REAL IMAGINARY 

SYSTEM EISENVECTDRS 

iior COL 7 e 

REAL IHrFGINLRY REAL IMAGINARY 

SYSTEM EIGENVECTORS 

ROW caL 9 io 

RELL I n A 6 ~ N ~ R ~  REAL IHAGINARY 
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SYSTEtl EIGENVECTORS 
C = . 3  (concluded) 

ROW CDL 11 12 

RE RL IHRGINRRY REAL IIIAGINRR'f 

1 0.2102385E-01 -0.2447391E-02 0.2102385E-01 0.2447391E-02 
2 0.3948400Et00 0.4062861E-03 0.3948400Et00 -0.4062861E-03 
3 0.7324376E-01 -0.8528292E-02 0,7324376E-01 0.8528292E-02 
4 0.7421177E+00 0.4898968E-03 0.7421177Et00 -0.4898968E-03 
5 0.1407112E+00 -0.1638718E-01 #.1407112E+00 0.1638718E-01 
6 0.1000000E+01 -0.1043545E-16 0.10000OOE+01 -0.1699487E-16 
1 0.B284320E-03 0,729930bE-02 0. B284320E-03 -0.7299306E-02 
a -0.5353557E-03 @.1379389E+00 -0.5353557E-03 -0.1370389E+00 
9 0,28858O9E-02 0.2542963E-01 0.2886809E-02 -0.2542963E-01 

10 -0.9112162E-03 0.2579704Et00 -0.9112162E-03 -0.2575704Et00 

12 -0. V87432E-03 0.3470755Et00 -0. P987432E-03 -0.3470755Et00 
11 0.5547053E-02 0.4885376E-01 0,5547053E-02 -0.488537bE-01 



c = .4 

SYSTEN EIGERVRLUES UARPSRG 

RERL IHAGIYARY PERCENT CRITICRL 

4. !YQ9!802E-01 
-0.25097802E-01 
-0.131 133 14E+O0 
-0.13173314E+00 
-0.15858107E-01 
-0.15858107E-01 
-0.12499314E+00 
-0.12499314E+00 
-U. 10099797E+00 
-0.10099797Et00 
-0.13200455E-Q2 
-0.13200459E-02 

0,16021380E+OB 
0.16021380Et00 
0.20914582E+Ol 
0.20914582E+Ol 
0.88452947Et00 
0.88452946Et00 
0.95716937Et01 
0.95716937E+#1 
0.10414631E+02 
0.10414631E+02 
0.38024035Et00 
0.38024044Et00 

SYSTEH EIGENVECTORS 

ROW COL 1 2 

HERL ItlRGINARY REkL INAGlNARY 

1 0.100000OE+!~1 0,9025983E-17 0. i00000OE+01 0,1409463E-16 
2 -0.3800975E-05 0.18667b4E-06 -0.3B00975E-05 -0.1866164E-06 
3 -0.7157242E+00 0.1729QOOE-02 -0.7157242E+00 -0.1129000E-02 
4 0,9249993E-03 -0.4842527E-04 0.9249993E-03 0.484252lE-04 
5 0.44927TZEt00 -0.2497922E-03 0.4492792Et00 0.2497922E-01 
6 -0.2251002E+00 0.1251373E-01 -0.2251002E+OO -0. L251373E-01 
7 -0.250978OE-01 -0.1566517Et02 -0,25O?180E-01 QX1566517E+02 
8 0.3019714E-05 0.5953825E-04 0.3019714E-05 -0,5953825E-04 
9 0.4504819E-01 0.1121190E+02 0.4504819E-01 -0.1121190E+02 
10 -0, 7Bl805lE-03 -0.1448906E-01 -0.7818057E-03 0.1448906E-01 
11 -0,40?5797E+00 -0.7037410EtOI -0.4025797E+00 0.1037410E+01 
12 0,2015192E+00 0.3525920E+01 0.2016192E+00 -0.3525920E+Ol 

SYSTEH EIGENVECTORS 

AD# CDL 3 4 

1 -0.7220926Et00 0.6665542E-01 -0.7220926E+00 -0.6665542E-01 
2 -0.3551273E-03 0.3164666E-04 -0.3551273E-03 -0.316466bE-04 
3 -0.69421 lOE+00 0.1008209EtOO -0.69421 10Et00 -0.1008209E+00 
4 0.1344137E-01 -0.b009251E-03 0.1344137E-01 0.6009251E-03 
5 0. iO0000OE+Ol -0.9920450E-17 0,1000000E+Ol 0.5553115E-16 
6 -0.5065473E+00 0.2852252E-03 -0,5065473Et00 -0.2852252E-03 
7 -0.3246223E+00 -0.4555977EtOl -0.3246223E+00 0.4555977EtOl 
8 -0.1524258E-03 -0.2244272E-02 -0.1524258E-03 0.2244272E-02 
9 -0.5434439EtOO -0.4384901E+01 -0.5434439EtOO 0.4384901Et01 

10 0.2013502E-02 0.8472279E-01 0.2013502E-02 -0.8472279E-01 
11 -0.1317331E+00 0.6297249E+01 -O.l317331E+OO -0.6297249E+Ol 
12 0. b493293E-01 -0.3189892Et01 0.6493293E-01 0.3189892E+01 



SYSTEM EIGENVECTORS 
C = .4 (continued) 

RO# GOL 5 b 

REAL IRAGINARY REAL I HA61 NARY 

SYSTEH E I GENVECTORS 

RCH COL 7 8 

REAL IIIAGINARY REAL IHAGIMARY 

SYSTEH EIGENVECTORS 

ROW CCL 9 10 

REAL IHAGINBRY REAL IHIGINARY 

1 O,1580804E+00 0.2187002E-02 O,1580804E+00 -0.2187002E-02 
2 -0.5524315E+00 -0,3477948EtOO -0,5524315Et00 0.3477448Et00 
3 0.5342756EtOO 0,3460739E-02 0.5342756EtOO -0.3460739E-02 
4 -0, 6b43558EtOO -0.2679729EtOO -0.6643558EtOO 0.267?72?E+O0 
5 0.100OOOOE+01 -0,1409463E-17 0.1000000E+01 0,4209415E-lb 
6 -0.2172453E+OO 0.1878309E+00 -0.2172453Et00 -0.1878389E+O0 
7 -0.1807516E-01 0,15?2471E+00 -0.1807516E-01 -0.1522471EtOO 
8 0, 3?12413E+00 -0.497691 7E+M 0,3?12413E+00 0.4?76917E+00 
9 -0.5729862E-01 0.5149574Et.00 -0.5729862E-01 -@.5149574E+00 

10 0,3255575EtOO -0.6137041E+00 0.3255575Et00 0,&137041E+00 
1 1  -0.1009980E+00 0.9&449&5E+00 -0.1009980E+00 -0.9644965E+00 
12 -9.1592?09E+00 -0.2285028EtOO -0.1592209EtO(J 0.2285028E+00 
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SYSTEM E 1 GENWEOTORS 
C = .4 (concluded) 

POW COL 11 12 

REAL IRf iGINARY REBL IRA6 INBRY 

1 0, 2081346~-01 ~ . 3 2 3 z m ~ - 0 2  o. 20ei346~-0i  - o . E - ~ ~ s Q ~ E - o ~  
2 @.3948730E+00 -0.5371934E-0.3 0.3?48730E+00 0.5371934E-03 
3 0.7251047E-01 0. fi26408E-01 0,7251047E-01 -0,1126408E-01 
4 0.742157bE+01) -0.6477329E-03 0.7421576E+00 0.6477329E-03 
5 0.1393019€+00 0.2164394E-01 O.l39301?E+O0 -0.2164394E-01 
5 0.lU@OO00E+01 -0.4691885E-16 0.1000000E+01 0.2789110E-16 
7 0.10?4716E-02 -0.7???833E-02 0,!0?471bE-02 0.722?833E-02 
8 -0.707741bE-03 -0.1370827E+OO -0.7077416E-03 0.1370927Et00 
? 9.3814703E-02 -0.2518748E-01 0.3814703E-02 0.2518748E-01 

I0 -0.1204548E-02 -0. 2576453E+?@ -0,1204548E-02 0.2576453E+00 
11 0.7329990E-02 -0.4838838E-01 0.7329990E-02 0.4838858E-01 
12 -0,132OO46E-02 -0.3471583E+00 -6.1320046E-02 Oa3471583E+O0 
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c = .5 

SYSTEM EIGENVALUES 

REllL INAGINARY 

-0,31325969E-01 
-0.31325759E-01 
-0.1641 1189E+00 
-0.16411189E+00 
-0.i8026970E-01 
-0.18026970E-01 
-0.15540295Et00 
-0.15540295E+00 
-0.12950050E+OG 
-0.12950050Et00 
-0.1531 7135E-102 
-0.16317139E-02 

-0.15654441E+02 
6.1566?441E+02 

-0. 62906666Et01 
0.b290666bEW 
0. 17895488Et01 

-0,l7895488E+Ol 
-0.12716557Et01 
?.12716557€+01 

-0.98242523EtCO 
0.98242523Et04 
0,347?6287E+00 

-0.34726287EtD0 

SYSTEM EIGENVECTORS 

ROW GO!. 1 

REAL ItlAGIhlARY 

DAMPING 

PERCENT CRITICAL 

7 

HEIIL 1 HAGINARY 

1 0.!000000E+01 0.9730714E-17 0.100000OE+i!! 0.8565197E-17 
2 -0.3796046E-05 0.2330692E-06 -0,3196046E-45 -0.2330692E-06 
3 -0.7 156756E+00 0.2 1583 15E-02 -0.7 156756EiW -0.21 583 15E-02 
4 0,923629OE-03 -0.6044940E-04 0.9235290E-03 0.6044844E-04 
5 0.4485280E+UO -0,311753SE-01 0.44E528GEt00 0.3117533E-01 
5 -0.2247239Et00 0.1561777E-01 -0.2247239E+OQ -0.1561717E-01 
7 -0,3132597E-01 -0.1566444Et02 -0,313?591E-01 0.1566444Et02 
8 0,3169814E-05 0.594363E-04 u.3159814E-05 -0.5945563E44 
9 0.56?2B03E-01 I!. 11210VEt02 0.5622W3E-01 -0, 1121$59E+02 

0. t446624E-01 
0.7G2496SEt01 

10 -I:. 9758239E-03 -0.1446624E-01 -0.97582?9E-U3 
11 -0. %23947E+l00 -OB7024963E+01 -0.5023947E+I!O 
12 0,251 b834EtO0 4.351 9685E+01 0, ?516834Et00 -0,35!9$85E+{!l 

SYSTEI EIGENVECTORS 

ROW COL 3 4 

H E6L IHAGINARY RE6L IMAGINARY 

109 



SYSTEH EIGENVECTORS 
C = .5 (continued) 

%! SOL- 5 

S W E R  EiEE#irECfORS 

ROW COL ? 8 

SYSiEH EIEENilECTORS 
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SYSTEH EIGENVECTORS 
C = .5 (continued) 
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c = 1.0 

SYSTEII EIGENVRLUES 

REAL IRAGINARY 

SYSTEM EIGENVECXhS 

RD# EEL 1 

RERL ! !MINARY 

2 

REGL IRhGIMflRY 

!??STEM EIGENVECTDRS 

ROW’ CDL 3 4 

REFlL IHAGIIJGRl REAL IHAGINARY 
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C = 1.0 (continued) 
RDL! CDL 5 5 

REAL !RAGI NARY REAL I H A G I N ~ R ~  

SYSTEM EIGENVECTORS 

EO11 CDL ? e 

REAL M A G  I NARY REAL IMSINARY 

SYSTM E I SENVECTORS 

4011 CDL 9 10 

R EAL IRASINARY REAL I HAG INARY 

1 0.14O471?E-OiI 0.1021558Et00 0,1404719E-02 -0.1021558E+FO 
2 0.1000000E+01 0.2385245E-17 0.lOOOOOOE+Ql 0.2439455E-17 
3 0.7102750E-02 6.3407863Ei00 0.7102750E-02 -0.3407863E+00 
4 O,7385597E+00 -0.1887922E+00 0.7385597EW 0.1887922E+00 
5 0.1716112E-01 0.6304836E+OO 0.1716112E-01 -0.6304836E+00 
5 -0.4901721Et00 -0.2788587Et00 -0,4901721E+00 0,2788687EW 
7 -0.1151719E+O0 -0.6979974E-02 -0.1151719E+00 0.5979974E-02 
8 -0.8301367E-01 0.1126262EtOl -0.8381367E-01 -0,llZb262E+0l 
9 -0.38440?8E+OO -0.205630OE-01 -0.3844O?8E+00 0.205630OE-01 

10 0,1507280Et00 0.8476348Et00 0.1507280Et00 -0.8476348E+UO 
1 I -0.7115277Et60 -0.3351524E-01 -0.7115277EtQO 0.3351524E-01 
12 0.3551622E+@O -0.5286889Et00 0.3551622EtO0 0.5286889E+00 
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C = 1.0 (concluded) 
'rDU CUL 11 12 

HEAL I f lAGiNARY RE61 IKAOINAHY 

114 



C = 1.50 

PWEH EIGENVALUES EAMPING 

REA? I NPG I N W  PERCENT CRITICAL 

SYSTEM E 1 GENVECTORS 

ROW COL 1 2 

REUL INAGIIAPY REAL IMAfiINARY 

SYSTEM EIGENVECTORS 

ROil COL 3 4 

REAL I ~ A G I I A R Y  REAL I l lAGIMf lRY 

1 -0,7003134Et00 -0.2558198EtOU -0.7003134Et00 0.2558198E+00 
2 -0.371 1115E-03 -0.1205074E-03 -0.371 11 !5E-03 0,1205074E-03 
3 -Os6663783E+!N -?.3852480E+00 -0.66637P3EtO0 0.3852480Etrj0 
4 0.138913E-01 0.2215325E-Ir2 0.1389138E-01 -0.2215325E-02 
5 0.1000000E+01 -0.3258028E-16 0,100000OE+01 -0.7480995E-1? 
6 -0.5067647E+00 -0.1049694E-02 -Om5067647E+00 0.1049694E-02 
7 -0.12546?3E+Ol 0.4423267E+01 -0.12546?SE+O1 -0.4423267Et01 

9 -0.2O661 07E+01 0.4273447Et01 -0.2O66107E+01 -0.4273447Et01 
10 0.7304697E-02 -0.864390bE-01 0.7304697E-02 0.8643906E-01 
11 -0.4549175EtOQ -0.6149946Et01 -0.4549175Et00 0,6349946E+01 
12 0,2240806EtO0 0.3117053E+01 0,2240806E+00 -0.3117053E+01 

8 -0.5722886E-03 0.233713*5E-02 -0z5722886E-03 -0.2337136E-02 
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SYSTEB EIGENVECTORS 

C = 1.50 (continued) 
RQU CDL 5 6 

REAL IBAGI NARY REAL IflRGINRRY 

1 0,1703675E-01 0,3379409E-01 0,1703675E-01 -0.3379409E-01 
2 -0,8833838EtOO 0.455776lE-01 -0,8833838EtOO -0.4557761E-01 
3 0.5326868E-01 O,1051073E+OO 0.5326868E-01 -0.1051073E+00 

5 0,9267497E-01 Onl818933E+O0 0,9267497E-01 -0.1818933EW 
6 -0,2456216Et00 -0.1038279Et00 -0.2456216E+00 0,1038279Et00 

8 -0,6608132E-01 -0.1563435Et01 -0,6608132E-01 O,1563435E+Ot 

10 -0,1646441E-01 0.1768976EtOl -0,1646441E-01 -0,1768976EtOl 
1 1 -0,32$2907E+00 0,1609451€+90 -0.3232907EtDO -0.1609451E+00 
12 O,1877131E+00 -0.4327893Et00 Ot1877131E+00 0.4327893Et00 

4 0~1000000Et01 0,2629190E-17 0~1000000E+Ol Oa6884684E-16 

7 -0,6006143E-01 0.2958121E-01 -0,6006143E-01 -0s2958121E-01 

9 -0~1848093Et00 0.9250049E-01 -0,1868093E+OO -0,9250049E-01 

SYSTEM EIGENVECTORS 

ROY COL 7 8 

REAL IE IAGIMRY REAL . IMAGINARY 

1 0.1451437Et00 0.1344744E-01 041451437E+40 -0,1344744E-01 

3 0.51 381 4 8 E W  0.21 42018E-01 0,5138148Et00 -0.2142018E-01 
4 -O~1582141E+OO -0.4097058E-01 -0,1582141E+00 0,8097058E-01 
5 0.1000000E+01 0.9595189E-17 O,1000OOOE+01 -0.4179599E-16 
4 -0,4217223Et00 0.8672913E-01 -0,4217223E+00 -0.8672913E-01 
7 -0.1382051E+00 0,9644655E-01 -0~1382051E+OO -0.9644655E-01 
8 Q.758OBbbE-01 0.2599881E-01 0.7580866E-01 -0.2399881E-01 
9 -0,4697103Et00 0.3645470EtOO -0,4697103Et00 -0.3645470Et00 

10 0,2001397E+00 -0.4657473E-01 0.2001397E+00 0.4657473E-01 
11 -0,883D5O4EtOO 0.7463042Et00 -0.8830504E+00 -0,7463042Et00 
12 0,3076757€+00 -0.3913193E+00 0,3076757EtOO 0.3913193Et00 

.2 -0 e 3668O4OE-0 1 -0 58 17737E-01 -0 I 366804OE-0 1 0.5817737E-0 t 

SYSTEfl EIGENVECTORS 

RDW COL 9 10 

REAL IflRGINARY REAL IBAGINARY 

1 0. 5017824E-03 -0 6129145E-0 1 0 8 5017824E-03 0.6129 I45E-01 
2 0,1000000Et01 -0.6991661E-17 0,1000000E+Ol 0,3882799E-17 
3 0,2550694E-02 -0.2044287E+00 0,2550694E-02 0.2044287EtOO 
4 On7315707Et00 O n  1142539E+00 On7315707EtOO -0.1142539E+OO 
5 0,6177524E-02 -On378I5i7E+00 0,6177524E-02 0 ,3781517Et00 
6 -0,4778583Et00 O.l6716?7E+00 -0,4778583EtOO -0,1671697Et00 
7 -0.6912449E-01 0,2540065E-02 -0.691244PE-01 -0.2540065E-02 
8 -0e5067210E-01 -O.l127385E+Ol -0s5067210E-01 0.1127385E+01 
9 -0a2305991Et00 0.7483220E-02 -0a2305991Et00 -0s7483220E-02 

10 0,9173795E-01 -0.8305513E+00 0,9173795E-01 0.8305513E*00 
11 -0.4266555Et00 0.1219729E-01 -0.4266355EtOO -0.1219729E-01 
12 0,2126787Et00 0.5302595Et00 0,2126787Et00 -0.5302595Et00 
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SYSTEti ElGENVECTORS 

C = 1.50 (concluded) 

ROM COL 11 12 

REAL IRAGINARY REAL IRAGINARY 

1 ' 0.1591786E-01 -0,9404970E-02 0.1591786E-01 0.9404970E-02 
2 0.39566ZOE+00 0.1602719E-02 0,3956620E+00 -0.1602119E-02 
3 0,5544906E-01 -0.3276955E-01 0.5544906E-01 0.3276955E-01 
4 0.7431094E+00 0.1931741E-02 0.7431094E+QO -0.1931741E-02 
5 O,1065151E+OO -0,6296137E-01 0,1065151E+00 0.6296137E-01 
6 0.1000000E+Ol -0.4163336E-16 0~1000000E+01 -0.1406752E-16 
7 0,3221323E-02 0.5593942E-02 0.3221323E-02 -0.5593942E-02 
8 -0.2103963E-02 O,l381270E+00 -0.2103963E-02 -0.1381270E+00 
9 0,3322404E-01 0.1948625E-01 081i22404E-01 -0,1948625E-01 

10 -0.3575054E-02 0.2594263EtOO -0.3575054E-02 -0.2594263Et00 
1 1 0.2156526E-0 1 0.3743224E-0 i 0 I 21Jb5%E-01 -0 I 3743224E-01 
12 -0.3903390E-02 0.3491193Et00 -0.3903390E-02 -0,3491193E+00 



c = 2.0 

USTEN EIGENVALUES 

REAL IMAG!NARY 

-0, 1:801539E+00 
-?.11801539E+00 
-0.56283407EtOO 
-0.56283407E+00 
-0.13452456E-01 
-0.13452656E-01 
-0.17299727Et01 
-0 a 3694Q523E-01 

-9.79872751Et00 
-0.43982814E-02 
-0,43982814E-02 

-0.35949523E-01 

0,15635587Et02 
-0. i5635587Et02 
-0.6037141OEt01 
0, 60371410E+?l 

-0.17657839E+01 
0. 17657839Et01 
0.53489056E-10 
0.112370JPEt01 

-0.11277039Et01 
-9.11243424E-14 
-0.35022652EtOO 
0.35022652E+00 

SYSTEM EIGENVECTORS 

ROW COi 1 

REAL f MAGINARY 

DUPING 

PERCENT CRITICAL 

2 

HEGL IMAGINARY 

SYSTEM EIGENVECTORS 

ROW COL 3 4 

REBL InAGINARY REGL IMAGINIIRY 
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C = 2.0 ( con t inued)  
SYSTEII EIGENVECTORS 

ROW COL 5 6 

REAL INAGINIIRY RERL IHAGINARY 

1 0,1036344E-Cll -0.277302UE-01 0,1036344E-01 0.2773020E-01 
2 -0.8929918E+O0 -0.3795372E-01 -0.8929918E+00 0.3795372E-01 
3 0.3243UZlE-01 -0.8631915E-01 0.3243021E-01 0.8631915E-01 
4 0.10000OOE+0l -0,1900064E-15 0.100000OE+01 -0.4100995E-16 
5 0.5646788E-01 -0.149505AEt00 0,5645788E-01 0.1495054Et00 
6 -0.2248242Et00 0.8546268E-01 -0.2248202E+OO -0.8546268E-01 
7 -0.4910446E-01 -0.1792655E-01 -0,4910495E-01 0.1792555E-01 
9 -0.5500495E-01 0.157734lEtOl -0.5500495E-01 -@.1577341E+61 
9 -0,1528572Et00 -6.5510353E-01 -0, 1528572Et00 0.5610353E-0! 

10 -9,l'ii45265E-01 -0.1755784E+OL -0.13452btE-01 1765784Et01 
11 -C. 2547539Et00 -0,9769884E-01 -0,2647539Et00 O.Y769834E-01 
12 fl.1539331Et00 0.3958342Et00 D. 1539331Et00 -0.3958342EtOC 

SYSTEM EIGENVECTORS 

ROY CDL 7 a 

REAL t flAG I NARY REAL I M I I G I N A R Y  

! 0. i!Q3451E+M -0,lb51375E-15 O.2659510E-03 C.4459958E-01 
2 -9.1845592E-01 0.259780QE-17 0,1000000E+Ol 0.9590057E-18 
3 0.4739241Et00 -<I. l69582BE-15 0.1352447E-02 0.14874B4E+Ol! 
4 -0.Y214583E-91 0. !402<48E-!6 0.7295491EtOO -0.8333625E-O! 
5 0.1010!1000E+01 -i1,1537!45E-!5 0.3276075E-02 0,2751424Et00 
6 -D,4415!52Et00 -0,3250738E-lb -D.A745571Et?i! -0.12151?4E+C0 
7 -?.2081937E+00 -0.4868047E-i4 -0.5C1305il6E-01 -9.134B023E-02 

1 -0.5675815E-17 -O.36?4952E-01 0.1127W4Et01 
0 0.2834835E-14 -0.1677Q41EtOD -0,3971(~22E-0i 

10 0.1594115Et00 -0.1818672E-15 0.5701843E-01 0.825Y074EtOO 
11 -0.1729~73Et01 -~1.1562552E-la -0,3104002E+00 -0.6471935E-02 
12 U. 7639@?3E+.0t! 9.8151374E-15 C. 1545775Et010 -0.5305664E+04 

SYSTEtl E!GEN!'ECTORS 

REAL IMAGINIIRV REAL ~ N ~ G I ~ I I R Y  

1 0.2559510E-03 -0.4459968E-01 0.141b727E+00 0,7304812E-17 
2 0.100Q9OOE+Ol -0.9676504E-!7 -0,5840039E-01 0.4336809E-17 
3 0.1352447E-02 -0.1487484Et00 0.5081991Et00 -0.4583465E-16 
4 ?.7295491E+00 0.8333625E-Qt -0.1540582E+?O 0.4743385E-18 
5 9,3??6075E-N -O.?751424E+00 0, !00t~000E+Ol 0.18Q7354E-18 
b -0.4745571E+00 OC1216124E+0Q -0.3479999E,Q? -0.5468445E-16 
3 -0.51130~05E-01 B.13480 3E-02 -0,1131579Et00 -0.3152938E-14 
8 -0.3594952E-01 -0.11277 4EtOl 0,46546#(1E-O1 9.238931 fE-i5 
9 -G..1677941Et00 0.3971022E-P? -0.4059126Et00 0.172519hE-14 

10 0,6701843E-01 -0.8259074EtNi C, 1230505E+00 8.2708473E-16 
11 -0.31040B2Et00 0.6471936E-02 -9.79E7275Et00 -0,91!1296lE-!5 
12 0.154h775Etilll 0.53060b4EtC(! 0,277VS71Et0O 0.4483447E-15 
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C = 2.0 (concluded) 
SYSTEB EIGENVECTORS 

ROW CO1 i l  12 

REAL IBAGINARY REAL INAGINARY 

1 0,1322368E-01 0.1050203E-01 0,1322368E-01 -0.1050203E-01 
2 0,3961138E+09 -0.1815051E-02 0,39b1138E+00 0.1815051E-02 
3 0,46061 19E-01 0.3658992E-01 0,4606319E-01 -0.3658992E-01 
4 0.7436541Et00 -0.2187163E-02 0,7436541Et00 0.2187163E-02 
5 0,8847686E-01 0,7029820E-01 0,8847686E-01 -Pa 7029820E-01 
b 0~1000000E+01 0.2986977E-lb 0,1000000E+01 0.5827587E-18 
7 0.3619930E-02 -0.4677474E-02 0,3619930E-02 0.4677474E-02 
8 -0,2377899E-02 -0.1387216Et00 -0.2377899E-02 0.1387216E+00 
9 0,1261217E-01 -0.1629278E-01 0,1261217E-01 0.1629278E-01 
19 -0.4036803E-02 -0.2604378Et00 -0,4036803E-02 0.2604378E+00 
1 1  0,2423115E-01 -0.3129613E-01 0.24231iSE-01 0.3129613E-01 
12 -0,4398281E-02 -Om3502265E+00 -0.4398281E-02 Oa3502265E+00 
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